![信息流推荐算法](https://wfqqreader-1252317822.image.myqcloud.com/cover/888/51709888/b_51709888.jpg)
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_01.jpg?sign=1739346428-qyjg69fWTvGKWSdJc3Mu37K6qTaNoBBZ-0-8d75e81ca8d65328abc127583cfba06e)
图3-14 Item2vec和SVD的可视化效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_02.jpg?sign=1739346428-7wxWXvqwKQZ8ln89tcEtXAgCTbPr7Cu9-0-b0d4b5fd94d7305661d1062736c7cb60)
图3-16 视频观看倾向与发布时间对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_01.jpg?sign=1739346428-RrkLYuReR4lQJZu9eboY1xGeowNZlqOy-0-5977bee1ae462e397659a37c01d0ee98)
图3-30 Node2vec效果可视化
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_02.jpg?sign=1739346428-q45CqWs50oydzKv01ETH77koHiTGkxCc-0-ab733f160c68a670ea6ee064b81697f7)
图3-37 DIEN模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_01.jpg?sign=1739346428-5nMT7F3RYkV35o6SEyhixFwOkxZm60nQ-0-7c019760eb8acc2c3c2f488706b8203a)
图4-2 不同α系数的衰减速度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_02.jpg?sign=1739346428-Fxy6FmKLrZN6i9twBpChWUUkymXyslJg-0-395528b9d6bfebd4f440986d6347590e)
图4-20 PRAUC与Hit Rate在粗排中的区别
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_01.jpg?sign=1739346428-jgTZYJ340D7YOJP6p2cY9JgFMXTKI7lS-0-a44557bb309fec7090574808baff4c56)
图5-15 不同正则化方式的训练和测试误差
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_02.jpg?sign=1739346428-5WB6i1lbyDtzVbKsKAc7bJ1nNuDxINB9-0-ea1e26b36091572bb628834f78c15499)
图5-16 DIEN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/7_01.jpg?sign=1739346428-mp5Oy0Mif0SvCVZPGPqKvtUMEbQyJkI8-0-bf7ac52981cd5c4595985a2ddf2e7d18)
图5-18 DSIN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_01.jpg?sign=1739346428-iU7XXHyVV6gdVvpYcHtxahfHOfHCAeCF-0-fb74ad792a72746edc32833b250d1b1c)
图5-20 工业级展示广告系统的实时点击率预测系统
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_02.jpg?sign=1739346428-lgBUiJ8TaIZeB6XicWX3oDoypfosElm1-0-b7cd4c6a34db0b74fdbe8d10ee861e02)
图6-3 高斯过程拟合函数的示例
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_03.jpg?sign=1739346428-xPNWpYoohDr1XJw4KbpeSj1POlVP5PBu-0-b78cf419e47ce4ec582e49783efcc0e2)
图6-7 (1+1)-ES和(μ+λ)-ES的对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_01.jpg?sign=1739346428-PuLQkQs1m2mHDXk6NHOjtDfms6NklgZA-0-794bb0524c7bf8868674314f875bef5f)
图6-8 OpenAI ES优化的示例一
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_02.jpg?sign=1739346428-XQwGF6XotVbaaqftyEy2COgCzTYgeytB-0-494ed1d87c539ac0654a987c91da2302)
图6-9 OpenAI ES优化的示例二
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/10_01.jpg?sign=1739346428-bqlI8mHiWh1hzsFBQNJkEPYOuRNGK09H-0-721d4a91d1ed80b425e9fff62d2f95b3)
图6-16 多个强化学习方法在4种类型上的动作分布
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_01.jpg?sign=1739346428-Th0Slqb2gzxErIFhllmbUZBpRvoyrHkk-0-3710e4b0d3f846cd21d41fa650085823)
图7-3 DLCM在不同相关文档上的优化效果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_02.jpg?sign=1739346428-Lq421TQ5P3LDR3OrNGHYHvwpp8ldLVeZ-0-44c2a8dd980474f31d7e45e8e39c48ba)
图7-8 Seq2Slate的计算流程
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_01.jpg?sign=1739346428-97CIS5Bg6qEyWH28cGiG8jIaVL4iYNo1-0-41c7913436fadb2845d9f703f5e3877f)
图7-10 GRN中的Evaluator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_02.jpg?sign=1739346428-kPsMIKrqbEksmqNad0tQMzwxxEPFZzv2-0-65a5e7c3e586e3102800d5e1c7198471)
图7-11 GRN中的Generator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_01.jpg?sign=1739346428-sh2RGlP9R29XoK4eJAmDKLKfoMyv6KSA-0-a3fa11ea7ebd31e5aaa6dc47da8226f2)
图7-14 电商场景中的案例对比:list-wise模型与Permutation-wise模型
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_02.jpg?sign=1739346428-XbDK8CZltZTvAeMZzjJGiCPpwe9LXie2-0-8a22727fd8fa68b38bd3b5181a97b7f7)
图7-16 PRS框架的整体结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_01.jpg?sign=1739346428-t4qBm9NIgIzooCNrskRWerVoLZ5TNyeK-0-3f29ff124e721d0ddbb82224c6f26981)
图7-17 基于Beam Search的序列生成方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_02.jpg?sign=1739346428-D8Y5esZ3wZ7Zz2PUGS5ncnN8N3Or9S92-0-d63ae1213dd96df764639ebb03e9f69a)
图7-18 DPWN的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_01.jpg?sign=1739346428-6G26ThvIquMYaKy951YI0tCheD9vp18c-0-746c4ec4ffc00fac0a64d6bcf372b506)
图7-19 流行的端云协同瀑布流推荐系统框架
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_02.jpg?sign=1739346428-jK1kg5I5MMmXZqqqDNC2fROEJ1nIvh7E-0-ac20ad0c61ee7e2586c5c0df1ea5c79e)
图7-22 EdgeRec中的异构用户行为序列建模和上下文感知重排的行为注意力网络
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_01.jpg?sign=1739346428-H4sKivm6CcP8T6sYXA70COnCvYKXbLxf-0-3171f807ddaa68307c5557c6d3380d95)
图7-24 减少模型参数空间的MetaPatch方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_02.jpg?sign=1739346428-9YoKiBO6ebPLkUC7CXRJ8ys2UuhIUYjG-0-6f8c707ffc0a9d502d3133217a75e20c)
图7-25 增强云端模型的MoMoDistill方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_03.jpg?sign=1739346428-I3xbp4QvfvtzF3jToqHQmasWm1T4c3FK-0-e8b2c64d5a0c4582620d715325a17b16)
图7-26 DCCL-e和DIN在所有细分用户群上的推荐效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_01.jpg?sign=1739346428-InyoV9i9kls5j6wvOVcbuuvKfBltLsWa-0-cbeae38320e16b18de488eecf167a9bd)
图8-3 负采样校准前后的概率密度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_02.jpg?sign=1739346428-BBYu5jtjmDz5M0sWA8gP8fjJ8Wnai00k-0-bf4377cfc285b0acad8154e09c2f6c38)
图9-2 DropoutNet的相关实验结果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_01.jpg?sign=1739346428-J6mGgPVCBYfKUMwkcNMNaqkY8OP9ChID-0-856b9f0bdecef7acc52b1c6ae96cb1cc)
图9-5 MWUF算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_02.jpg?sign=1739346428-yVtFeTptn5z6AHhFGSGqddQuEX782nXy-0-ba134540b98878a5892828ef763a42e9)
图9-7 Cold & Warm算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_01.jpg?sign=1739346428-jYPe7ivuSmt5WljgaeSw1WIZjZBR6NP5-0-88215c2dd99324ac29c748b6751b56dc)
图9-9 冷启动和非冷启动任务的效果变化趋势
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_02.jpg?sign=1739346428-cPg7kpcCPEQlaIS4b3EIH4NY7Fpwl1Fg-0-f2323e1815aa001c8785a2b1ec1b5107)
图9-11 数据偏置的说明和它对于模型训练的负向影响
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_03.jpg?sign=1739346428-S5k31Iv79XpmiS7SPYJO2bog88kxHbDm-0-c09d510c4ee64d360e126979cc501e4f)
图9-17 CIKM Cup 2016数据集的相关分析
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_01.jpg?sign=1739346428-uNj9tatpJFb9AtHCxrDGVTOLD3cvQuAB-0-086806549773329aa38854278f1fe4ed)
图9-19 属性间的相关性在源领域和目标领域是一致的
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_02.jpg?sign=1739346428-maCQldY0m90tdoMCDcw65djYGUXbBsh9-0-64e78ad20ec6ced6e365d98f10357057)
图9-20 ESAM算法中多个损失的设计意图
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_01.jpg?sign=1739346428-cge9xj52Z62cbDDkUheyzWDNrHZBN7R9-0-9dc42bb71ee7c612fea88ad00158350b)
图9-21 T-SNE对数据特征分布的可视化,红色和蓝色分别表示源领域和目标领域
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_02.jpg?sign=1739346428-jRo1EZLM5XEsNcTKZ2RMiyF7OwysyUuG-0-8ba6a2d3fbaa61fcdb720ed843ccebaf)
图9-22 真实数据上的相关性得分分布对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_01.jpg?sign=1739346428-MCwmmuOE0AOMII5Tu99QADuvMPng0Ini-0-5c64511a7dd45aafc979b16fa4355cd2)
图9-23 解决协同过滤中长尾问题的对抗网络模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_02.jpg?sign=1739346428-POU6lWx38Jvo7VjjxiNITf0aSZO7uK03-0-00b640ce84b5f2e5493d904d0a48bdc9)
图10-6 层与桶的流量关系