![基于变分法的细胞演化建模](https://wfqqreader-1252317822.image.myqcloud.com/cover/598/44569598/b_44569598.jpg)
上QQ阅读APP看书,第一时间看更新
2.3.2 参数方程表达举例
现在讨论参数方程表示下平面曲线的变分问题.
假设光滑的平面曲线的参数方程表示如下:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21445.jpg?sign=1738882037-Mj3m74OC6071XQ50DdjFQ5WLkEMNgX24-0-604e3b93cc356434baea044dec56c54a)
这条曲线L是泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21447.jpg?sign=1738882037-HoANJxzQ5Jq6M0ochTuhg5E3R9sjpkUx-0-b47f3024eca2b840af1dcd0a4068e00d)
的“极小点”.为讨论方便起见,假设泛函定义在连续可导函数集合(C1[α, β])2=(C1[α, β])×(C1[α, β])上,集合的元素满足边界条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21449.jpg?sign=1738882037-7AKpOD7c2839bQsjxAHqosqlyGstCxAQ-0-42f6409b6009819bf05086ed649cf0ec)
与直角坐标形式下类似,选取齐次边界条件的摄动函数(组)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21451.jpg?sign=1738882037-G5nLUjmbSRoIw0PZNHLX5BEgsGjb4Dy5-0-dd5ad07c360201f84388ee3bc0916241)
假设L就是极小值函数曲线,那么摄动后的展开式如下:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21453.jpg?sign=1738882037-yl0Nz0IadBxY6SR65f5wSsAUfYqAbTmD-0-ca60fc690fc3f3837af5d4459e2a4be1)
得到泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21455.jpg?sign=1738882037-LsnWr4nO8G6iJPjFojOY0wHdLJS3srO6-0-0ff419e0b58fa1ab052323242f5b5dee)
当ε=0时极小点也是驻点,曲线L满足泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21458.jpg?sign=1738882037-HdBaffxCjcYjSXi7pwwh5w4M9DMjUwRH-0-6d2abfb4ed5eb0b5defe3596c24203ee)
这里利用了摄动向量{φ1,ψ1}的齐次边界条件.再利用摄动向量的任意性和定理1.5即可得到泛函式(2-22)的驻点的必要条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21460.jpg?sign=1738882037-HuvlLaIL2Rzydm7QgtBPaQ1U38w2EmbF-0-fcea8f89d29adcc4944667cb03896474)
这正是曲线在参数方程表示下泛函式(2-22)对应的欧拉-拉格朗日方程.
例2.2 等周问题的解满足
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21461.jpg?sign=1738882037-5Ee9bMHaKD6Uz9RerYO8SW1b2d7WmMMz-0-02753f49342103a3e2eb25a1c4052e0a)
解 回看等周问题的带有约束的泛函式(2-7)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21462.jpg?sign=1738882037-UG2yZQisrCp6qhJB3anPp2ej0MrPsmPC-0-f3a58e211349d300d3fc57e364a7e0cf)
这里的
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21464.jpg?sign=1738882037-Ko80Sm0PPQ7YsMJnc1QJ1wOXjurGofFd-0-564f507a1cb38d41eb08b6124895075e)
其相应的欧拉-拉格朗日方程变成
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21465.jpg?sign=1738882037-jpILmNzd4exL62QK193oVK0kXbkzaDw8-0-afb708762c436863be6a7c215f8e4272)
和
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21466.jpg?sign=1738882037-bEn3nMa4XpjV627sbblOzfsoleExA0Nz-0-2c012ca303f98ab936d7f674e651b11e)
对两个方程进行首次积分得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21469.jpg?sign=1738882037-GGVQWtpdwyK0QqmUyT6LOV5t78nWNGhE-0-23e09f5b0fc2538137e61e4614a72931)
分别将上面两式乘以φ′和ψ′,再相加得到
φ φ′-C1φ′+ψ ψ′-C2ψ=0
再次积分得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21519.jpg?sign=1738882037-G8x4Rlg3IoR1estXhUSQdiKzI4Q6Vi3o-0-589b35bf0d368d25f5cb8dd42ee62564)
因此,可得出等周问题的必要解是圆周,也就是式(2-24).式(2-26)中的常数C1、C2和C可以依据边界条件和围成区域的曲线长度确定,这里略去讨论.