![车用同步电机噪声与振动](https://wfqqreader-1252317822.image.myqcloud.com/cover/853/42637853/b_42637853.jpg)
2.2 连续系统的振动
2.2.1 薄板的振动
弹性薄板是二维弹性体,可以承受弯矩。设薄板的中性面在变形前为平面。建立(x,y,z)坐标系,(x,y)坐标面与变形前的中性面重合,z轴垂直向下(见图2.1)。薄板受到沿z轴的分布力f(x,y,t)作用。在中性面上任意点处取长宽分别为dx和dy的矩形微元体。将与x轴和y轴正交的横截面分别记为Sx和Sy,假设弯曲变形后截面仍保持平面。将板的中性面法线视为截面Sx和Sy的交线,则弯曲变形后必保持直线。弯曲变形后,中性面上各点产生沿z轴的挠度w(x,y,t),且引起截面Sx和Sy的偏转。设截面Sx绕y轴的偏角为θx,截面Sy绕x轴的偏角为θy。在小挠度的前提下,偏角θx和θy可用挠度w(x,y,t)对x轴和y轴的变化率代替:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_07.jpg?sign=1738856461-VJu1hCJMyYh5PhQjHC8Qpyvuq8a2cBJO-0-916d9e8008944c8e9d5ac545459c85fa)
图2.1 弹性薄板
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_08.jpg?sign=1738856461-rhTrDafjA5rQeB7NokKcnpvYay0Y7yWH-0-8ef203af7d1dd5ab1a8f90d62082444d)
则截面上坐标为z的任意点产生沿x轴的弹性位移u和沿y轴的弹性位移v分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_09.jpg?sign=1738856461-1UnTIx6QpwFNHQAjZRMt1Zp6MPhqgd25-0-df98f81dc5852e214e1e38dd0e482ab7)
位移u和v对x轴和y轴的变化率导致微元体沿x轴和y轴的正应变εx和εy:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_01.jpg?sign=1738856461-kZE9Yei78znSArxeb3Y4LJifX8duFwXv-0-0b2b47fc719cdae79a1e6772f4c6f442)
除正应变以外,位移u对y轴的变化率和位移v对x轴的变化率导致微元体在(x,y)平面内的切应变γxy为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_02.jpg?sign=1738856461-Hwgdf5k6xNDHV9j21g8TE3Ql60Idvjzm-0-ac84bed79d11a9cbaf9b39ea6a2511b1)
代入广义胡克定律计算正应力和切应力:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_03.jpg?sign=1738856461-QBOFbdeqzvZ4yuIAZnoSWJI1MBEkl83p-0-e9aadcbdf75812f5cd346818de3a53b2)
σx、σy、τxy在截面Sx和Sy上的积分为零。设、
分别为截面Sx和Sy上沿z轴单位长度的剪力,板的厚度为h,密度为ρ。根据达朗贝尔原理,考虑微元体的惯性力,列出微元体沿z方向的力平衡方程(见图2.2):
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_06.jpg?sign=1738856461-cMnkCuX9aJgusFnccUJjxhdWWClYkLNT-0-61c1606e1bd4599f47f31c486b374422)
计算截面Sx的单位长度上作用的绕y轴的弯矩My和绕x轴的转矩Myx,以及截面Sy的单位长度上作用的绕x轴的弯矩Mx和绕y轴的转矩Mxy,得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_07.jpg?sign=1738856461-W3G5dYZtL9sy5mGToDuG4rRF9gAnUVuP-0-45e4f637a936add2a8fd01ec8ce68194)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_08.jpg?sign=1738856461-3q5xd5XokledIif6BO5C4GLTKAQ2bfcE-0-084d6b997cc1ee93ab8e0a5fdee959b8)
图2.2 微元体沿z方向的力平衡
式中,D为板的抗弯刚度:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_09.jpg?sign=1738856461-SFC7fepW2ws5asWM7D9cjwOAXDHT7yCJ-0-dbc01985099b79cf128b32f26ee15dc6)
忽略截面转动的惯性力矩,列写微元体绕y轴的力矩平衡条件(见图2.3):
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_10.jpg?sign=1738856461-myRMeLLY0Np7MpMn6RKOkMcFQbtcSbjI-0-0270f59595587d6ce7508c0db364fa5b)
略去dx、dy的三次项,得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_11.jpg?sign=1738856461-133fl7lfNdAj2vQasajA4l2KPISkYMCu-0-e9c876c8cad22f9867f07e7e3e3eba52)
与此类似,从微元体绕x轴的力矩平衡条件导出(见图2.4)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_12.jpg?sign=1738856461-dX8rKp3e1V0TreaQwyxzWT6W9q8snVe6-0-da83035d83e2f13b9309e77b4da9855e)
将式(2-62)、式(2-63)代入式(2-58),得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_13.jpg?sign=1738856461-iWELnHnWP4w14xjYpaeQKpE763zfM4gw-0-a16ce61fc10f04021861a86ed29f87fd)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_01.jpg?sign=1738856461-4KdSL5FD4UA2RQBKrwUlYfd58LPoLTDA-0-37a466fc0650456a75d482f0d5fc9c2b)
图2.3 微元体绕y轴的力矩平衡
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_02.jpg?sign=1738856461-FFD6Knk0sGrPlJKQXAyIiC0tyjetuWFT-0-88aa6e4c5fa6220ff4238ba7492df3e1)
图2.4 微元体绕x轴的力矩平衡
将式(2-59)代入后,利用二重拉普拉斯算子得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_03.jpg?sign=1738856461-G2bUkSEprzbMXzZ0F7JdBKmMQupJpPRB-0-b40d740f23cd39d119e6bb29257b35b1)
导出薄板的振动方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_04.jpg?sign=1738856461-apxsj3j6t87tlwZBL5BL3GNfxK2RFb2P-0-4bbd4e299933b99e8ece22644c35ef90)
2.2.2 圆环的振动
本节研究的圆环,假定为等截面的而且截面尺寸和环中心线半径相比要小得多,同时截面在振动过程中仍然保持平面。选择圆柱坐标系Rθz,圆环在振动中除了扩张振动之外,还有扭转振动,如图2.5所示。设其绕轴线的转角为ψ,于是截面上各点有三个方向的位移,设其沿R、θ、z方向的位移为u、v、w。现以轴线(截面中心线)上各点的位移为u、v、w,绕轴线的转角为ψ,略去高阶微量,则环上任意点a(R,θ,z)的位移将为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_05.jpg?sign=1738856461-kG62LXTnyKYIZOeX4rFqjNtOFbB3KMBG-0-cb9e9a66bbd05a9cceb52e69ffd68aaf)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_06.jpg?sign=1738856461-LzauVolIHAkH0IT2cqUt4nVQVNDsQQLz-0-e26930103b6f45dc9ba4e64ec939ff7e)
图2.5 圆环的振动
根据小变形情况下圆柱坐标系中的柯西方程,截面上各点应变和应力分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_01.jpg?sign=1738856461-zFEw7iWi2QVZ82KriSpHMhjyOkbnIqfq-0-9e6893f60ad88ecf8c57fe89f42aa5bb)
上述关于剪切变形只限于平面假设,因此只能适用于圆截面的圆环,以下只讨论圆截面的圆环。圆环的势能表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_02.jpg?sign=1738856461-zavXqowHonQxgAyvn1UuQj09zErvKRnM-0-8ad6dae22a008c695f1dda973e4966d5)
式中,A为圆环截面积;Jz、Jr分别为截面对于通过形心而分别平行于z轴和R轴的轴线的惯性矩;JP为圆截面的极惯性矩。
动能表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_03.jpg?sign=1738856461-ZZeEq2arVE2fqQe7xpbL6jOZBO10cLvy-0-771c076448c1d4b7debb4d2ea17f3b57)
式中,、
、
分别为圆环上任意一点a(R,θ,z)在u、v、w三个方向上的速度,且
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_07.jpg?sign=1738856461-QbvnYIDukvUsTGBoeGfJ5gytmStNVRW2-0-425df71e87b1f95a979af25914355259)
在动能和势能表达式中可以发现,u、v和w、ψ之间不发生耦合,因此可将圆环振动分解为环面内的振动和环面外的振动。
1.环面内的振动
变分方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_08.jpg?sign=1738856461-BQ2WoP6NlXrBmNqY8F0klyThQu6AbLcu-0-d018057b7e4be545a845508b49330c14)
讨论环面内的振动时,在动能和势能表达式中令w=ψ=0,然后将其代入变分方程式(2-72),经过变分运算,并考虑δu、δv的任意性,略去小量得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_09.jpg?sign=1738856461-JsYmdnjCg6iHDphUWhJ63XppsAkoDvgI-0-87decc166a2e707db32f6f323ac24c34)
此方程包括圆环在环面内的伸缩和弯曲振动,由于Jz=Ar2,要使弯曲振动的有关项和伸缩振动的有关项同量级,则由εθ=+
,可得u=-
。根据这个关系,假设
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_13.jpg?sign=1738856461-VOtasyZjtMOdAl3Y980mog4iK5wPIKeW-0-d976654bcf21c688a1e0961e3ec947b2)
将式(2-74)代入式(2-73),可求得圆环在环平面内弯曲振动频率为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_01.jpg?sign=1738856461-cwLyIMqIfsHhD4EEDllte7vpCiLOcpWR-0-4ce7d4b5069aa4b5f2cef36d02164f76)
当n=0时,p0=0,u0=0,v0=B0,是圆环的刚体转动。
当n=1时,p1=0,u=-A1cosθ+B1sinθ,v=A1sinθ+B1cosθ,是圆环的刚体平动。
考虑到Jz=Ar2,将式(2-73)进一步简化,便得到圆环的伸缩振动方程:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_02.jpg?sign=1738856461-4TLliyxvWQfYdrvtZxgmtm1WuHN7dzU8-0-369e16a57fa26c5d3551c301ae4336d3)
此时设圆环做波数为n的伸缩振动的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_03.jpg?sign=1738856461-sHF3Bt2GnBeKTwn6b7afjTo9aUEy9Ajf-0-f59461006a26ee8bea43af06c4489e9e)
将式(2-77)代入式(2-76)可解得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_04.jpg?sign=1738856461-he42eBVKxiukWlXOWupoOfE6ovn9ixdu-0-bc224534a46c0c504810937d18ef46eb)
当n=0时,圆环切向位移为零,只做均匀的径向振动。
2.圆环的扭转振动和面外弯曲振动
在动能及势能表达式中令u=v=0,然后代入变分方程式(2-72)中,经过变分运算,并考虑δw和δψ,得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_05.jpg?sign=1738856461-9DqShQxz9fGx19ojkJgGQ3epzUQbUEOa-0-573744f1b28dee8da80930622d6192e7)
以上两个方程彼此之间发生耦合,即面内弯曲振动与扭转振动是互相耦合的,现设其振动时的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_06.jpg?sign=1738856461-BR6XVeEIQcz3iGMZ2xhm4fBnVPrJcIvw-0-3cac11dad5d7e79c6487ede916ff96df)
将式(2-80)代入式(2-79),并考虑到Jz=Ar2,得到频率方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_07.jpg?sign=1738856461-EWB3kfQpDkPtuKyM8LGycHv65NjzB460-0-a7174929f8682ac4dc3084265503eea1)
所以有
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_08.jpg?sign=1738856461-3FSrLPXGmvk1K6CudrQjCKZtji8xEkyI-0-494995fba8a2f721d73ab707b5d676d5)
式(2-82)中,由于根号中的后一项比前一项小得多,所以根号取正值或取负值时,频率值的差值较大。频率中较高的一类是常说的扭转振动,低的一类是弯曲振动。对于扭转振动,其频率值为根号取正值,即
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_09.jpg?sign=1738856461-OHsKBT3Jbg6jHvuLWc2vAmFfooyi2ZZu-0-456fde422217e1595a4484e2b5df51ae)
当n=0时,有
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_01.jpg?sign=1738856461-06Alg0CbP6Iz1ME6G5aSvJ5zlRF2RXlF-0-43eaa24a90c82b608e9f1028c02cd80b)
相应的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_02.jpg?sign=1738856461-FUpP282WqmTJX6ABG2tPjw5xLZ9za3ne-0-2fe5a411a699a19acfbba67e7081c735)
和伸缩振动频率相比,扭转振动的基频低于伸缩振动的基频。
对于弯曲振动,即根号前取负号,可得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_03.jpg?sign=1738856461-qK3cBwMEBphYMqfyHGNbCU0TUTr1Zzw2-0-67bcb70c5a258e33fb974a385246b1c4)
式中,ν为泊松系数。
与前面的讨论比较可以看出,面内弯曲振动的频率和面外弯曲振动的频率是相当接近的。
2.2.3 圆柱壳体的振动
对于半径为R、长为L的圆柱壳体(见图2.6),取图中的圆柱坐标系(x,θ,z),其中x、θ、z分别表示轴向、切向和径向,R、h、L分别为圆柱壳体的中面半径、轴向长度和厚度,u、v、w分别为轴向、切向和径向的位移。
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_04.jpg?sign=1738856461-T6sh7Ut3xQUdRLtTPGxP8kB2sqmuhLhU-0-d29a39713314525fa91752353fc92245)
图2.6 圆柱壳体的圆柱坐标
若壳体中曲面上的一点P的轴向、切向、法向位移分别为u、v、w,则中面应变与中面位移之间的关系式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_05.jpg?sign=1738856461-NksUEhlegt44vyogxvPiV5aIn7uO3hPS-0-dd9cc1a9bed875f54d8385f6aecff3a6)
式中,ε为薄膜应变分量;χ为弯曲应变分量。
内力与圆柱壳中面应变的关系式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_06.jpg?sign=1738856461-cQHt3yUZNtPpZAGa7NjTlpu2YAWzoDsj-0-6865afe1acf7969a1b5a1b6a1a10325c)
式中,N为单位长度薄膜力;M为单位长度力矩。
薄膜刚度K和弯曲刚度D分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_01.jpg?sign=1738856461-yLzx8GcsZZyVf1YOSRpIEa100oKjoZIX-0-a2c9fc0848c5c06bd9e6f7d496f8b317)
圆柱壳体的一般性内力动平衡方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_02.jpg?sign=1738856461-0mXaCuWOjQ0BYmJEGiZJyTF7bLOdpbSx-0-f217bdb9cd341af2449c8051d9cc5c03)
式中,剪力表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_03.jpg?sign=1738856461-JdFwyrkazYr68gwEkyHF7BsGfYj0a0hG-0-23224e498f24c65d13240de634d2d73f)
将式(2-87)代入式(2-88),再代入式(2-90),即可得剪力以中面位移分量表示的圆柱壳体的基本微分方程组:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_04.jpg?sign=1738856461-DXCej1neCS2bcPLZmzLvmknal27Jho1R-0-4e5ea763337119b4c32946646b82f53a)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_05.jpg?sign=1738856461-jpIMVYYtDgF0qmqoVGk1tMvyMbPuz1ls-0-877e2cefbbb131a63f4836eb39e10ad3)
在电机的振动噪声分析中常见的是两端简支的有限长圆柱壳体(见图2.7)的振动,即圆柱壳体端部边界各点的法向和切向移动是约束的,转动和轴向移动是自由的。对于两端简支的圆柱壳体,其振型边界条件为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_06.jpg?sign=1738856461-tycCDbXDch6resRWhEsALeJ5XJps7AKR-0-3952ede9e0e1fa425b92e798b8249610)
式中,凡带*者均为响应力学量的振型。
设满足全部边界条件[式(2-94)]的圆柱壳体非轴对称振动的位移振型解为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_07.jpg?sign=1738856461-D9GgkryJvm2DpfisZUE4fhCTRidQ58UL-0-df252850c93d085a3584dbfe01c95b31)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_08.jpg?sign=1738856461-FlApO9NWIPPsgw241adkFn7vpQciLlhm-0-a14e81ffe117e7eff059f1c4a6afbbe7)
图2.7 两端简支的圆柱壳体
由于自由振动的圆柱壳体轴向、切向及径向的面压力均为零,即qx=qθ=qz=0,将上述位移振型解代入圆柱壳体的一般性内力动平衡方程,可得如下齐次线性代数方程组:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_01.jpg?sign=1738856461-RoD3Ilj9ojLZUMgcitbj1HOlD7gCVIwv-0-9d622bf8148bef4ff67139f9af10906e)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_02.jpg?sign=1738856461-IWNVXiURs3cHPKnX4LK6elIdLxhJKJxu-0-38f40204a5f0a2dd6be4412007f75b52)
为求得振型的非零解,必有式(2-96)的系数行列式为零,展开可得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_03.jpg?sign=1738856461-YSIixcn0M6yPSLZZL2awdMeui4eZwFG6-0-1ffec1181b1bcd1604dc5d0aa3ffdb06)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_04.jpg?sign=1738856461-Ap0CIhxebr7uFBxn7ETO2N8AOwfeZ7na-0-e346d14c1ba925d65c5f45b42dc87369)
式(2-98)即为两端简支圆柱壳体的频率方程,求得频率系数Ω2的三个根为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_05.jpg?sign=1738856461-JK1aPelSzPzEm9P94qvW3uNE3hATRk9F-0-f6a095fb270732939926e8ab7cd2aeb7)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_06.jpg?sign=1738856461-VrGbnDnaCRcyBFu38VewEmJxreUaGY5g-0-923a02376f46b8971456467cca4da995)
从而解得固有频率为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_07.jpg?sign=1738856461-y9aUptSzURnhiROgoaTxDrCPOjwJPJW8-0-09c97f7254d31199b8fd5511f4e92494)
式中,ωi,mn的下标m、n代表响应振型沿轴向有m个半波,沿周向有n个半波。对应一组(m,n),有三个频率(i=1,2,3),代表U、V、W间比值不同,但均有m个轴向半波和n个周向半波。三个频率中最低一个相应于振型中W为主,其他两个频率值要高过一个量级,相应于U、V为主。对应每一个ωi,mn或Ωi,mn,从式(2-96)中可求得一组振型比,例如取c=1,则由前两个方程可解出
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/54_01.jpg?sign=1738856461-3WWSvefYpUoBmYUrk9zBFq4clrz95qcX-0-347ea854214d147090e198cdcd14e036)
因此与ωi,mn相应的位移振型为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/54_02.jpg?sign=1738856461-5AGEDTRu5UCvBnHMZUa6DNsmJRscdavt-0-b0d04a10cea08bceff7cba927d52a0a0)