先进聚酰亚胺材料:合成、表征及应用
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

REFERENCES

[1] C.E. Sroog, A.L. Endrey, S.V. Abramo, C.E. Berr, W.M. Edwards, K.L. Olivier, Aromatic polypyromellitimides from aromatic polyamic acids, J. Polym. Sci. Part A: General Papers 3 (4PA) (1965) 1373.

[2] E.A. Laszlo. Process for preparing polyimides by treating polyamide-acids with lower fatty monocarboxylic acid anhydrides. USA. US3179630, 1965.

[3] Y. Sasaki, H. Inoue, I. Sasaki, H. Itaya, M. Kashima, H. Itatani. Stable, homogeneous polyimide soln., esp. For films-prepd. By reacting 3,3'-4,4'-di:Phenyl ether. In phenol or halo-phenol. US4290936-A, 1981.

[4] Y. Sasaki, H. Inoue, Y. Negi, K. Sakai. Continuous prepn. Of polyimide film from polyimide soln. Dope|by extruding dope of specified viscosity through i-die, supporting film on endless moving surface and evaporating solvent. US4473523-A, 1984.

[5] H. Itaya, T. Inaike, S. Yamamoto, H. Itatani. Polyimide resin moulding compsn. -obtd. By dissolving aromatic polyimide in solvent mixt. Of naphthol and/or resorcin and phenol and/or cresol. US4568715-A, 1986.

[6] M.E. Walter. Polyamide-acids, compositions thereof, and process for their preparation. US3179614, 1965.

[7] M. Kochi, T. Uruji, T. Iizuka, I. Mita, R. Yokota, High-modulus and high-strength polybiphenyltetracarboximide films, J.Polym. Sci. Part CPolym. Lett. 25 (11) (1987) 441-446.

[8] J.W. Verbicky, L. Williams, Thermolysis of n-alkyl-substituted phthalamic acids-steric inhibition of imide formation, J. Org. Chem. 46 (1) (1981) 175-177.

[9] T. Takekoshi, J.E. Kochanowski, J.S. Manello, M.J. Webber, Polyetherimides. 1. Preparation of dianhydrides containing aromatic ether groups, J. Polym. Sci. Part A:Polym. Chem. 23 (6) (1985) 1759-1769.

[10] M. Bessonov, Polyimides--Thermally Stable Polymers, Consultants Bureau, New York, 1987.

[11] C.C. Walker, High-performance size exclusion chromatography of polyamic acid, J. Polym. Sci. Part A:Polym. Chem. 26 (6) (1988) 1649-1657.

[12] P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953.

[13] L.E. Andrew. Aromatic polyimides from meta-phenylene diamine and para-phenylene diamine. USA. US3179633, 1965.

[14] E.A. Laszlo. Aromatic polyimide particles from polycyclic diamines. US3179631, 1965.

[15] R.H. William. Process for preparing polyimides by treating polyamide-acids with aromatic monocarboxylic acid anhydrides: Google Patents, 1965.

[16] R.J. Angelo. Treatment of aromatic polyamide-acids with carbodiimides: Google Patents, 1966.

[17] R.J. Cotter, C.K. Sauers, J.M. Whelan, Synthesis of n-substituted isomaleimides, J. Org. Chem. 26 (1) (1961) 10.

[18] R.L. Kaas, Auto-catalysis and equilibrium in polyimide synthesis, J. Polym. Sci. Part A:Polym. Chem. 19 (9) (1981) 2255-2267.

[19] T.P. Russell, H. Gugger, J.D. Swalen, Inplane orientation of polyimide, J. Polym. Sci. Part B-Polym. Phys. 21 (9) (1983) 1745-1756.

[20] S. Numata, T. Miwa, Thermal-expansion coefficients and moduli of uniaxially stretched polyimide films with rigid and flexible molecular chains, Polymer 30 (6) (1989) 1170-1174.

[21] P.-c Ma, Y. Hou, Partly imidized polyamic acid and its uniaxial stretched polyimide films, Chem. Res. Chinese Universities 29 (2) (2013) 396-400.

[22] M.J. Brekner, C. Feger, Curing studies of a polyimide precursor, J. Polym. Sci. Part A:Polym. Chem. 25 (7) (1987) 2005-2020.

[23] M.J. Brekner, C. Feger, Curing studies of a polyimide precursor. 2. Polyamic acid, J. Polym. Sci. Part B-Polym. Chem. 25 (9) (1987) 2479-2491.

[24] T.C.J. Hsu, Z.L. Liu, Solvent effect on the curing of polyimide resins, J. Appl. Polym. Sci. 46 (10) (1992) 1821-1833.

[25] H.-T. Chiu, J.-O. Cheng, Thermal imidization behavior of aromatic polyimides by rigid-body pendulum rheometer, J. Appl. Polym. Sci. 108 (6) (2008) 3973-3981.

[26] I. Sava, S. Chisca, M. Bruma, G. Lisa, Effect of thermal curing on the properties of thin films based on benzophenonetetracarboxylic dianhydride and 4,4’-diamino-3,3’- dimethyldiphenylmethane, J. Thermal Analysis Calorimetry 104 (3) (2011) 1135-1143.

[27] R.W. Snyder, B. Thomson, B. Bartges, D. Czerniawski, P.C. Painter, Ftir studies of polyimides - thermal curing, Macromolecules 22 (11) (1989) 4166-4172.

[28] E. Unsal, M. Cakmak, Real-time characterization of physical changes in polyimide film formation: From casting to imidization, Macromolecules 46 (21) (2013) 8616-8627.

[29] S. Isoda, H. Shimada, M. Kochi, H. Kambe, Molecular aggregation of solid aromatic polymers. 1. Small-angle x-ray-scattering from aromatic polyimide film, J. Polym. Sci. Part B-Polym. Phys. 19 (9) (1981) 1293-1312.

[30] M. Hasegawa, N. Sensui, Y. Shindo, R. Yokota, Structure and properties of novel asymmetric biphenyl type polyimides. Homo- and copolymers and blends, Macromolecules 32 (2) (1999) 387-396.

[31] D. Boese, H. Lee, D.Y. Yoon, J.D. Swalen, J.F. Rabolt, Chain orientation and anisotropies in optical and dielectric-properties in thin-films of stiff polyimides, J. Polym. Sci. Part B-Polym. Phys. 30 (12) (1992) 1321-1327.

[32] M.T. Pottiger, J.C. Coburn, J.R. Edman, The effect of orientation on thermal-expansion behavior in polyimide films, J. Polym. Sci. Part BPolym. Phys. 32 (5) (1994) 825-837.

[33] H. Inoue, Y. Sasaki, T. Ocawa, Properties of copolyimides prepared from different tetracarboxylic dianhydrides and diamines, J. Appl. Polym. Sci. 62 (13) (1996) 2303-2310.

[34] P.M. Hergenrother, J.G. Smith, Chemistry and properties of imide oligomers end-capped with phenylethynylphthalic anhydrides, Polymer 35 (22) (1994) 4857-4864.

[35] C.C. Roberts, T.M. Apple, G.E. Wnek, Curing chemistry of phenylethynyl-terminated imide oligomers: Synthesis of C-13-labeled oligomers and solid-state NMR studies, J. Polym. Sci. Part A:Polym. Chem. 38 (19) (2000) 3486-3497.

[36] T.A. Bullions, M.P. Stoykovich, J.E. McGrath, A.C. Loos, Monitoring the reaction progress of a high-performance phenylethynyl-terminated poly(etherlmide). Part ii: Advancement of glass transition temperature, Polym. Compos. 23 (4) (2002) 479-494.

[37] K. Kim, T. Yoo, J. Kim, H. Ha, H. Han, Effects of dianhydrides on the thermal behavior of linear and crosslinked polyimides, J. Appl. Polym. Sci. 132 (2015) 6.

[38] Y. Jung, Y. Yang, S. Lee, S. Byun, H. Jeon, M.D. Cho, Characterization of fluorinated polyimide morphology by transition mechanical analysis, Polymer 59 (2015) 200-206.

[39] T.W. Poon, B.D. Silverman, R.F. Saraf, A.R. Rossi, P.S. Ho, Simulated crystalline-structures of aromatic polyimides, Phys. Rev. B 46 (18) (1992) 11456-11462.

[40] W.S. Lambert, P.J. Phillips, J.S. Lin, Small-angle x-ray-scattering studies of crystallization in cross-linked linear polyethylene, Polymer 35 (9) (1994) 1809-1818.

[41] M. Kochi, R. Yokota, T. Iizuka, I. Mita, Improving tensile mechanical-properties of aromatic polyimides by thermal imidization after cold drawing of poly (amic acids), J. Polym. Sci. Part B-Polym. Phys. 28 (13) (1990) 2463-2472.

[42] H. Chung, J. Lee, W. Jang, Y. Shul, H. Han, Stress behaviors and thermal properties of polyimide thin films depending on the different curing process, J. Polym. Sci. Part B-Polym. Phys. 38 (22) (2000) 2879-2890.

[43] S.P. Ma, T. Sasaki, K. Sakurai, T. Takahashi, Morphology of solution-cast thin-films of wholly aromatic thermoplastic polyimides with various molecular-weights, Polymer 35 (26) (1994) 5618-5625.

[44] M. Hasegawa, K. Koseki, Poly(ester imide)s possessing low coefficient of thermal expansion and low water absorption, High Perform. Polym. 18 (5) (2006) 697-717.

[45] M. Hasegawa, Y. Tsujimura, K. Koseki, T. Miyazaki, Poly(ester imide)s possessing low CTE and low water absorption (ii). Effect of substituents, Polym. J. 40 (1) (2008) 56-67.

[46] M. Hasegawa, Y. Sakamoto, Y. Tanaka, Y. Kobayashi, Poly(ester imide)s possessing low coefficients of thermal expansion (CTE) and low water absorption (iii). Use of bis(4-aminophenyl)terephthalate and effect of substituents, Eur. Polym. J. 46 (7) (2010) 1510-1524.

[47] M.-C. Choi, Y. Kim, C.-S. Ha, Polymers for flexible displays: From material selection to device applications, Prog. Polym. Sci. 33 (6) (2008) 581-630.

[48] S. Logothetidis, Flexible organic electronic devices: Materials, process and applications, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 152 (1-3) (2008) 96-104.

[49] J.-J. Huang, Y.-P. Chen, S.-Y. Lien, K.-W. Weng, C.-H. Chao, High mechanical and electrical reliability of bottom-gate microcrystalline silicon thin film transistors on polyimide substrate, Curr. Appl. Phys. 11 (1) (2011) S266-S270.

[50] S. Nakano, N. Saito, K. Miura, T. Sakano, T. Ueda, K. Sugi, et al., Highly reliable a-IGZO TFTs on a plastic substrate for flexible amoled displays, J. Soc. Inf. Display 20 (9) (2012) 493-498.

[51] H. Yamaguchi, T. Ueda, K. Miura, N. Saito, S. Nakano, T. Sakano, et al. 74.2 l: Late-News paper: 11.7-inch flexible amoled display driven by a-IGZO TFTs on plastic substrate. SID Symposium Digest of Technical Papers. Wiley Online Library, 2012, pp. 1002-1005.

[52] Q. Jin, T. Yamashita, K. Horie, R. Yokota, I. Mita, Polyimides with alicyclic diamines. 1. Syntheses and thermal-properties, J. Polym. Sci. Part A:Polym. Chem. 31 (9) (1993) 2345-2351.

[53] M. Nishikawa, Y. Matsuki, N. Bessho, Y. Iimura, S. Kobayashi, Characteristics of polyimide liquid crystal alignment films for active matrix LCD use, J. Photopolymer Sci. Technol. 8 (2) (1995) 233-240.

[54] Y. Tsuda, K. Etou, N. Hiyoshi, M. Nishikawa, Y. Matsuki, N. Bessho, Soluble copolyimides based on 2,3,5-tricarboxycyclopentyl acetic dianhydride and conventional aromatic tetracarboxylic dianhydrides, Polym. J. 30 (3) (1998) 222-228.

[55] H. Suzuki, T. Abe, K. Takaishi, M. Narita, F. Hamada, The synthesis and x-ray structure of 1,2,3,4-cyclobutane tetracarboxylic dianhydride and the preparation of a new type of polyimide showing excellent transparency and heat resistance, J. Polym. Sci. Part A:Polym. Chem. 38 (1) (2000) 108-116.

[56] T.-L. Li, S.L.-C. Hsu, Preparation and properties of a high temperature, flexible and colorless ito coated polyimide substrate, Eur. Polym. J. 43 (8) (2007) 3368-3373.

[57] Y.-z Guo, H.-w Song, L. Zhai, J.-g Liu, S. Yang, Synthesis and characterization of novel semi-alicyclic polyimides from methyl-substituted tetralin dianhydride and aromatic diamines, Polym. J. 44 (7) (2012) 718-723.

[58] M. Hasegawa, K. Kasamatsu, K. Koseki, Colorless poly(ester imide)s derived from hydrogenated trimellitic anhydride, Eur. Polym. J. 48 (3) (2012) 483-498.

[59] M. Hasegawa, D. Hirano, M. Fujii, M. Haga, E. Takezawa, S. Yamaguchi, et al., Solution-processable colorless polyimides derived from hydrogenated pyromellitic dianhydride with controlled steric structure, J. Polym. Sci. Part A:Polym. Chem. 51 (3) (2013) 575-592.

[60] M. Hasegawa, M. Fujii, J. Ishii, S. Yamaguchi, E. Takezawa, T. Kagayama, et al., Colorless polyimides derived from 1s,2s,4r,5r-cyclohexanetetra carboxylic dianhydride, self-orientation behavior during solution casting, and their optoelectronic applications, Polymer 55 (18) (2014) 4693-4708.

[61] M. Hasegawa, M. Horiuchi, K. Kumakura, J. Koyama, Colorless polyimides with low coefficient of thermal expansion derived from alkylsubstituted cyclobutanetetracarboxylic dianhydrides, Polym. Int. 63 (3) (2014) 486-500.

[62] S.-H. Hsiao, H.-M. Wang, W.-J. Chen, T.-M. Lee, C.-M. Leu, Synthesis and properties of novel triptycene-based polyimides, J. Polym. Sci. Part A:Polym. Chem. 49 (14) (2011) 3109-3120.

[63] T. Matsumoto, E. Ishiguro, S. Komatsu, Low temperature film-fabrication of hardly soluble alicyclic polyimides with high tg by a combined chemical and thermal imidization method, J. Photopolymer Sci. Technol. 27 (2) (2014) 167-171.

[64] S.D. Kim, S.Y. Kim, I.S. Chung, Soluble and transparent polyimides from unsymmetrical diamine containing two trifluoromethyl groups, J. Polym. Sci. Part A:Polym. Chem. 51 (20) (2013) 4413-4422.

[65] Y. Oishi, K. Itoya, M. Kakimoto, Y. Imai, Preparation and properties of molecular composite films of block copolyimides based on rigid rod and semi-flexible segments, Polym. J. 21 (10) (1989) 771-780.

[66] M.K. Kolel-Veetil, H.W. Beckham, T.M. Keller, Dependence of thermal properties on the copolymer sequence in diacetylene-containing polycarboranylenesiloxanes, Chem. Mater. 16 (16) (2004) 3162-3167.

[67] E.F. Palermo, A.J. McNeil, Impact of copolymer sequence on solid-state properties for random, gradient and block copolymers containing thiophene and selenophene, Macromolecules 45 (15) (2012) 5948-5955.

[68] C.H. Choi, B.H. Sohn, J.-H. Chang, Colorless and transparent polyimide nanocomposites: comparison of the properties of homo- and copolymers, J. Ind. Eng. Chem. 19 (5) (2013) 1593-1599.

[69] K.-i Fukukawa, M. Okazaki, Y. Sakata, T. Urakami, W. Yamashita, S. Tamai, Synthesis and properties of multi-block semi-alicyclic polyimides for thermally stable transparent and low CTE film, Polymer 54 (3) (2013) 1053-1063.

[70] Q. Li, K. Hone, R. Yokota, Absorption and fluorescence spectra and thermal properties of novel transparent polyimides, J. Photopolymer Sci. Technol. 10 (1) (1997) 49-54.

[71] A.S. Mathews, I. Kim, C.-S. Ha, Fully aliphatic polyimides from adamantane-based diamines for enhanced thermal stability, solubility, transparency, and low dielectric constant, J. Appl. Polym. Sci. 102 (4) (2006) 3316-3326.

[72] A.S. Mathews, I. Kim, C.-S. Ha, Synthesis, characterization, and properties of fully aliphatic polyimides and their derivatives for microelectronics and optoelectronics applications, Macromol. Res. 15 (2) (2007) 114-128.

[73] A.S. Mathews, I. Kim, C.-S. Ha, Fully aliphatic polyimides - influence of adamantane and siloxane moieties, Macromol. Symp. 249 (2007) 344-349.

[74] P.K. Tapaswi, M.-C. Choi, Y.S. Jung, H.J. Cho, D.J. Seo, C.-S. Ha, Synthesis and characterization of fully aliphatic polyimides from an aliphatic dianhydride with piperazine spacer for enhanced solubility, transparency, and low dielectric constant, J. Polym. Sci. Part A:Polym. Chem. 52 (16) (2014) 2316-2328.

[75] P.K. Tapaswi, M.-C. Choi, S. Nagappan, C.-S. Ha, Synthesis and characterization of highly transparent and hydrophobic fluorinated polyimides derived from perfluorodecylthio substituted diamine monomers, J. Polym. Sci. Part A:Polym. Chem. 53 (3) (2015) 479-488.

[76] M.-C. Choi, J. Wakita, C.-S. Ha, S. Ando, Highly transparent and refractive polyimides with controlled molecular structure by chlorine side groups, Macromolecules 42 (14) (2009) 5112-5120.

[77] J.-H. Park, J.-H. Kim, J.-W. Park, J.-H. Chang, C.-S. Ha, Preparation and properties of fluorine-containing colorless polyimide nanocomposite films with organo-modified montmorillonites for potential flexible substrate, J. Nanosci. Nanotechnol. 8 (4) (2008) 1700-1706.

[78] J.-H. Kim, M.-C. Choi, H. Kim, Y. Kim, J.-H. Chang, M. Han, et al., Colorless polyimide/organoclay nanocomposite substrates for flexible organic light-emitting devices, J. Nanosci. Nanotechnol. 10 (1) (2010) 388-396.

[79] A.S. Mathews, D. Kim, Y. Kim, I. Kim, C.-S. Ha, Synthesis and characterization of soluble polyimides functionalized with carbazole moieties, J. Polym. Sci. Part A:Polym. Chem. 46 (24) (2008) 8117-8130.

[80] M.-C. Choi, J.-C. Hwang, C. Kim, S. Ando, C.-S. Ha, New colorless substrates based on polynorbornene-chlorinated polyimide copolymers and their application for flexible displays, J. Polym. Sci. Part A:Polym. Chem. 48 (8) (2010) 1806-1814.

[81] G.Y. Kim, M.-C. Choi, D. Lee, C.-S. Ha, 2d-aligned graphene sheets in transparent polyimide/graphene nanocomposite films based on noncovalent interactions between poly(amic acid) and graphene carboxylic acid, Macromol. Mater. Eng. 297 (4) (2012) 303-311.

[82] H. Lim, C.M. Bae, Y.K. Kim, C.H. Park, W.J. Cho, C.S. Ha, Preparation and characterization of ito-coated colorless polyimide substrates, Synth. Metals 135 (1-3) (2003) 49-50.

[83] M.-C. Choi, J.-C. Hwang, C. Kim, Y. Kim, C.-S. Ha, Synthesis of poly(n-9-ethylcarbazole-exo-norbornene-5,6-dicarboximide) for holetransporting layer in hybrid organic light-emitting devices, J. Polym. Sci. Part A:Polym. Chem. 48 (22) (2010) 5189-5197.

[84] J. Oishi, S. Hiramatsu, S. Kihara, H. Sotaro, H. Kihara. Manufacture of resin film for printed wiring board, involves forming polyamic acid or organic solvent containing polyimide on substrate, spraying gas, evaporating organic solvent, and peeling self-supportive film from substrate. US8357322.

[85] H. Oguro, S. Kihara, T. Bito, H. Kihara, T. Mifuji. Production of solvent-soluble polyimide comprises polycondensing tetracarboxylic acid component with diamine component in solvent in presence of tertiary amine. US7078477.

[86] C.D. Simone, B.C. Auman, P.F. Carcia, R.A. Wessel. Polyimide film used for electronic display, comprises perfluoro-imide moiety obtained by contacting dianhydride component and diamine component. US7550194.

[87] H.M. Cho, Y.H. Jeong, H.J. Park. Powder used for manufacture of polyimide film, contains imidized compound of polyamic acid obtained by polymerizing diamine component and acid dianhydride component, and has preset imidization rate and absolute molecular weight. US8846852.

[88] C.C. Fay, D.M. Stoakley, A.K. St Clair, Molecularly oriented films for space applications, High Perform. Polym. 11 (1) (1999) 145-156.

[89] R. Yokota, Recent trends and space applications of polyimides, J. Photopolymer Sci. Technol. 12 (2) (1999) 209-216.

[90] D. Dooling, M. Finckenor. Material selection guidelines to limit atomic oxygen effects on spacecraft surfaces, 1999.

[91] T.K. Minton, M.E. Wright, S.J. Tomczak, S.A. Marquez, L. Shen, A.L. Brunsvold, et al., Atomic oxygen effects on poss polyimides in low earth orbit, ACS Appl. Mater. Interfaces 4 (2) (2012) 492-502.

[92] S.J. Tomczak, M.E. Wright, A.J. Guenthner, B.J. Pettys, A.L. Brunsvold, C. Knight, et al. Space survivability of main-chain and side-chain poss-kapton polyimides. In: Kleiman JI (ed). Protection of materials and structures from space environment, edn, vol. 1087, 2009, p. 505.

[93] E. Miyazaki, M. Tagawa, K. Yokota, R. Yokota, Y. Kimoto, J. Ishizawa, Investigation into tolerance of polysilo- xane-block-polyimide film against atomic oxygen, Acta Astronautica 66 (5-6) (2010) 922-928.

[94] K. Yokota, S. Abe, M. Tagawa, M. Iwata, E. Miyazaki, J.-I. Ishizawa, et al., Degradation property of commercially available si-containing polyimide in simulated atomic oxygen environments for low earth orbit, High Performance Polym. 22 (2) (2010) 237-251.

[95] M.A. Golub, T. Wydeven, Reactions of atomic oxygen (O(3P)) with various polymer-films, Polym. Degrad. Stabil. 22 (4) (1988) 325-338.

[96] R.A. Synowki, J.S. Hale, J.A. Woollam, Low earth simulation and materials characterization, J. Spacecraft. Rockets 30 (1) (1993) 116-119.

[97] R.H. Hansen, J.V. Pascale, T. De Benedi(ctis), P.M. Rentzepis, Effect of atomic oxygen on polymers, J. Polym. Sci. Part A: General Papers 3 (6PA) (1965). 2205-2214.

[98] M. Strobel, S. Corn, C.S. Lyons, G.A. Korba, Surface modification of polypropylene withcf4, cf3h, cf3cl, and cf3br plasmas, J. Polym. Sci. Part A:Polym. Chem. 23 (4) (1985) 1125-1135.

[99] A.D. Katnani, A. Knoll, M.A. Mycek, Effects of environment and heat-treatment on an oxygen plasma-treated polyimide surface and its adhesion to a chromium overcoat, J. Adhesion Sci. Technol. 3 (6) (1989) 441-453.

[100] L.J. Matienzo, F.D. Egitto, Polymer oxidation downstream from oxygen microwave plasmas, Polym. Degrad. Stabil. 35 (2) (1992) 181-192.

[101] J. Chen, C.T. Liu, Technology advances in flexible displays and substrates, IEEE Access 1 (2013) 150-158.

[102] J.-S. Park, H. Chae, H.K. Chung, S.I. Lee, Thin film encapsulation for flexible AM-OLED: A review, Semicond. Sci. Technol. 26 (2011) 3.

[103] Y.-W. Wang, W.-C. Chen, Synthesis, properties, and anti-reflective applications of new colorless polyimide-inorganic hybrid optical materials, Compos. Sci. Technol. 70 (5) (2010) 769-775.

[104] J. Chen, J.-C. Ho, Frontlinetechnology: A flexible universal plane for displays Inf. Display 27 (2) (2011) 6.

[105] Y.-H. Yeh, C.-C. Cheng, K.-Y. Ho, P.-C. Chen, M.H. Lee, J.-J. Huang, et al. 7-inch color VGA flexible TFT LCD on colorless polyimide substrate with 200 °C a-Si: H TFTs. In. 2007 SID international symposium, digest of technical papers, vol xxxviii, books i and ii, edn, Vol. 38, 2007, pp. 1677-1679.

[106] K. Long, A.Z. Kattamis, I.C. Cheng, H. Gleskova, S. Wagner, J.C. Sturm, Stability of amorphous-silicon TFTs deposited on clear plastic substrates at 250 °C to 280 °C, IEEE Elect. Dev. Lett. 27 (2) (2006) 111-113.

[107] K. Miura, T. Ueda, N. Saito, S. Nakano, T. Sakano, K. Sugi, et al. Flexible amoled display driven by amorphous InGaZnO TFTs. Proceedings of 2013 Twentieth International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD 13): TFT Technologies and FPD Materials, 2013, pp. 29-32.

[108] M. Yan, T.W. Kim, A.G. Erlat, M. Pellow, D.F. Foust, H. Liu, et al., A transparent, high barrier, and high heat substrate for organic electronics, Proc. IEEE 93 (8) (2005) 1468-1477.

[109] L.M. Fraas, L.D. Partain, Solar Cells and Their Applications, Vol. 236, John Wiley & Sons, New York, 2010.