Spark大数据商业实战三部曲:内核解密、商业案例、性能调优(第2版)
上QQ阅读APP看书,第一时间看更新

3.2 RDD弹性特性7个方面解析

RDD作为弹性分布式数据集,它的弹性具体体现在以下7个方面。

1.自动进行内存和磁盘数据存储的切换

Spark会优先把数据放到内存中,如果内存实在放不下,会放到磁盘里面,不但能计算内存放下的数据,也能计算内存放不下的数据。如果实际数据大于内存,则要考虑数据放置策略和优化算法。当应用程序内存不足时,Spark应用程序将数据自动从内存存储切换到磁盘存储,以保障其高效运行。

2.基于Lineage(血统)的高效容错机制

Lineage是基于Spark RDD的依赖关系来完成的(依赖分为窄依赖和宽依赖两种形态),每个操作只关联其父操作,各个分片的数据之间互不影响,出现错误时只要恢复单个Split的特定部分即可。常规容错有两种方式:一个是数据检查点;另一个是记录数据的更新。数据检查点的基本工作方式,就是通过数据中心的网络链接不同的机器,然后每次操作的时候都要复制数据集,就相当于每次都有一个复制,复制是要通过网络传输的,网络带宽就是分布式的瓶颈,对存储资源也是很大的消耗。记录数据更新就是每次数据变化了就记录一下,这种方式不需要重新复制一份数据,但是比较复杂,消耗性能。Spark的RDD通过记录数据更新的方式为何很高效?因为①RDD是不可变的且Lazy;②RDD的写操作是粗粒度的。但是,RDD读操作既可以是粗粒度的,也可以是细粒度的。

3.Task如果失败,会自动进行特定次数的重试

默认重试次数为4次,TaskSchedulerImpl的源码如下所示。

Spark 2.2.1版本的TaskSchedulerImpl.scala的源码如下:

Spark 2.4.3版本的TaskSchedulerImpl.scala源码与Spark 2.2.1版本相比具有如下特点。

 上段代码中第1行取消了类TaskSchedulerImpl的访问权限限制。

 上段代码中第4行删除黑名单列表跟踪变量blacklistTrackerOpt。

 上段代码中第14行删除this构造函数的maybeCreateBlacklistTracker参数。

 上段代码中第15行之后新增变量blacklistTrackerOpt,用于跟踪问题executors和nodes节点,延迟初始化BlackListTrackerOpt以避免获取空的ExecutionAllocationClient,因为ExecutorAllocationClient是在此TaskSchedulerImpl之后创建的。

 上段代码中第17~23行,删除带sc、maxTaskFailures、isLocal参数的this构造函数。

TaskSchedulerImpl是底层的任务调度接口TaskScheduler的实现,这些Schedulers从每一个Stage中的DAGScheduler中获取TaskSet,运行它们,尝试是否有故障。DAGScheduler是高层调度,它计算每个Job的Stage的DAG,然后提交Stage,用TaskSets的形式启动底层TaskScheduler调度在集群中运行。

4.Stage如果失败,会自动进行特定次数的重试

这样,Stage对象可以跟踪多个StageInfo(存储SparkListeners监听到的Stage的信息,将Stage信息传递给Listeners或web UI)。默认重试次数为4次,且可以直接运行计算失败的阶段,只计算失败的数据分片,Stage的源码如下所示。

Stage.scala的源码如下:

在Stage终止之前允许的Stage连续尝试的次数为4次,在DAGScheduler.scala的源码object DAGScheduler中进行定义。DAGScheduler.scala的源码如下:

Stage是Spark Job运行时具有相同逻辑功能和并行计算任务的一个基本单元。Stage中所有的任务都依赖同样的Shuffle,每个DAG任务通过DAGScheduler在Stage的边界处发生Shuffle形成Stage,然后DAGScheduler运行这些阶段的拓扑顺序。每个Stage都可能是ShuffleMapStage,如果是ShuffleMapStage,则跟踪每个输出节点(nodes)上的输出文件分区,它的任务结果是输入其他的Stage(s),或者输入一个ResultStage,若输入一个ResultStage,这个ResultStage的任务直接在这个RDD上运行计算这个Spark Action的函数(如count()、save()等),并生成shuffleDep等字段描述Stage和生成变量,如outputLocs和numAvailableOutputs,为跟踪map输出做准备。每个Stage会有firstjobid,确定第一个提交Stage的Job,使用FIFO调度时,会使得其前面的Job先行计算或快速恢复(失败时)。

ShuffleMapStage是DAG产生数据进行Shuffle的中间阶段,它发生在每次Shuffle操作之前,可能包含多个Pipelined操作,ResultStage阶段捕获函数在RDD的分区上运行Action算子计算结果,有些Stage不是运行在RDD的所有的分区上,例如,first()、lookup()等。SparkListener是Spark调度器的事件监听接口。注意,这个接口随着Spark版本的不同会发生变化。

5.checkpoint和persist(检查点和持久化),可主动或被动触发

checkpoint是对RDD进行的标记,会产生一系列的文件,且所有父依赖都会被删除,是整个依赖(Lineage)的终点。checkpoint也是Lazy级别的。persist后RDD工作时每个工作节点都会把计算的分片结果保存在内存或磁盘中,下一次如果对相同的RDD进行其他的Action计算,就可以重用。

因为用户只与Driver Program交互,因此只能用RDD中的cache()方法去cache用户能看到的RDD。所谓能看到,是指经过Transformation算子处理后生成的RDD,而某些在Transformation算子中Spark自己生成的RDD是不能被用户直接cache的。例如,reduceByKey()中会生成的ShuffleRDD、MapPartitionsRDD是不能被用户直接cache的。在Driver Program中设定RDD.cache()后,系统怎样进行cache?首先,在计算RDD的Partition之前就去判断Partition要不要被cache,如果要被cache,先将Partition计算出来,然后cache到内存。cache可使用memory,如果写到HDFS磁盘的话,就要检查checkpoint。调用RDD.cache()后,RDD就变成persistRDD了,其StorageLevel为MEMORY_ONLY,persistRDD会告知Driver说自己是需要被persist的。此时会调用RDD.iterator()。

RDD.scala的iterator()的源码如下:

当RDD.iterator()被调用的时候,也就是要计算该RDD中某个Partition的时候,会先去cacheManager那里获取一个blockId,然后去BlockManager里匹配该Partition是否被checkpoint了,如果是,那就不用计算该Partition了,直接从checkpoint中读取该Partition的所有records放入ArrayBuffer里面。如果没有被checkpoint过,先将Partition计算出来,然后将其所有records放到cache中。总体来说,当RDD会被重复使用(不能太大)时,RDD需要cache。Spark自动监控每个节点缓存的使用情况,利用最近最少使用原则删除老旧的数据。如果想手动删除RDD,可以使用RDD.unpersist()方法。

此外,可以利用不同的存储级别存储每一个被持久化的RDD。例如,它允许持久化集合到磁盘上,将集合作为序列化的Java对象持久化到内存中、在节点间复制集合或者存储集合到Alluxio中。可以通过传递一个StorageLevel对象给persist()方法设置这些存储级别。cache()方法使用默认的存储级别-StorageLevel.MEMORY_ONLY。RDD根据useDisk、useMemory、useOffHeap、deserialized、replication 5个参数的组合提供了常用的12种基本存储,完整的存储级别介绍如下。

StorageLevel.scala的源码如下:

StorageLevel是控制存储RDD的标志,每个StorageLevel记录RDD是否使用memory,或使用ExternalBlockStore存储,如果RDD脱离了memory或ExternalBlockStore,是否扔掉RDD,是否保留数据在内存中的序列化格式,以及是否复制多个节点的RDD分区。另外,org.apache.spark.storage.StorageLevel是单实例(singleton)对象,包含了一些静态常量和常用的存储级别,且可用singleton对象工厂方法StorageLevel(…)创建定制化的存储级别。

Spark的多个存储级别意味着在内存利用率和CPU利用率间的不同权衡。推荐通过下面的过程选择一个合适的存储级别:①如果RDD适合默认的存储级别(MEMORY_ONLY),就选择默认的存储级别。因为这是CPU利用率最高的选项,会使RDD上的操作尽可能地快。②如果不适合用默认级别,就选择MEMORY_ONLY_SER。选择一个更快的序列化库提高对象的空间使用率,但是仍能够相当快地访问。③除非算子计算RDD花费较大或者需要过滤大量的数据,不要将RDD存储到磁盘上,否则重复计算一个分区,就会和从磁盘上读取数据一样慢。④如果希望更快地恢复错误,可以利用replicated存储机制,所有的存储级别都可以通过replicated计算丢失的数据来支持完整的容错。另外,replicated的数据能在RDD上继续运行任务,而不需要重复计算丢失的数据。在拥有大量内存的环境中或者多应用程序的环境中,Off_Heap(将对象从堆中脱离出来序列化,然后存储在一大块内存中,这就像它存储到磁盘上一样,但它仍然在RAM内存中。Off_Heap对象在这种状态下不能直接使用,须进行序列化及反序列化。序列化和反序列化可能会影响性能,Off_Heap堆外内存不需要进行GC)。Off_Heap具有如下优势:Off_Heap运行多个执行者共享的Alluxio中相同的内存池,显著地减少GC。如果单个的Executor崩溃,缓存的数据也不会丢失。

6.数据调度弹性,DAGScheduler、TASKScheduler和资源管理无关

Spark将执行模型抽象为通用的有向无环图计划(DAG),这可以将多Stage的任务串联或并行执行,从而不需要将Stage中间结果输出到HDFS中,当发生节点运行故障时,可有其他可用节点代替该故障节点运行。

7.数据分片的高度弹性(coalesce)

Spark进行数据分片时,默认将数据放在内存中,如果内存放不下,一部分会放在磁盘上进行保存。

Spark 2.2.1版本的RDD.scala的coalesce算子代码如下:

Spark 2.4.3版本的RDD.scala源码与Spark 2.2.1版本相比具有如下特点。

 上段代码中第20行mapPartitionsWithIndex方法调整为mapPartitionsWithIndexInternal方法,mapPartitionsWithIndexInternal方法中传入的参数新增一个字段isOrderSensitive。isOrderSensitive用来标识函数是否区分顺序。如果它是对顺序敏感的,当输入顺序改变时,它可能返回完全不同的结果。大多数状态函数是对顺序敏感的。

mapPartitionsWithIndexInternal方法将构建一个MapPartitionsRDD类,构建类实例时传入isOrderSensitive。

MapPartitionsRDD.scala源代码如下:

MapPartitionsRDD.scala的getOutputDeterministicLevel方法将获取DeterministicLevel的Value值。

MapPartitionsRDD.scala源代码如下:

其中DeterministicLevel定义了RDD输出结果的确定级别(即“RDD compute”返回的值)。当Spark RDD重新运行任务时,输出将有所不同。包括以下级别:

(1)确定DETERMINATE:在重新运行后,RDD输出总是以相同顺序的相同数据集。

(2)无序:RDD输出总是相同的数据集,但重新运行之后顺序可能不同。

(3)不确定的。重新运行后,RDD输出可能不同。

注意,RDD的输出通常依赖于父RDD。当父RDD的输出是不确定的,很可能RDD的输出也是不确定的。

RDD.scala的DeterministicLevel代码如下:

例如,在计算的过程中,会产生很多的数据碎片,这时产生一个Partition可能会非常小,如果一个Partition非常小,每次都会消耗一个线程去处理,这时可能会降低它的处理效率,需要考虑把许多小的Partition合并成一个较大的Partition去处理,这样会提高效率。另外,有可能内存不是那么多,而每个Partition的数据Block比较大,这时需要考虑把Partition变成更小的数据分片,这样让Spark处理更多的批次,但是不会出现OOM。