![智能控制:理论基础、算法设计与应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/210/31476210/b_31476210.jpg)
5.1 T-S模糊模型
T-S(Takagi-Sugeno)模糊模型由Takagi和Sugeno两位学者在1985年提出。该模型的主要思想是将非线性系统用许多线段相近地表示出来,即将复杂的非线性问题转化为在不同小线段上的问题。
5.1.1 T-S模糊模型的形式
前面介绍的为传统的模糊系统,属于Mamdani模糊模型,其输出为模糊量。另一种模糊模型为T-S模糊模型,其输出为常量或线性函数,其函数形式为
y=a
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P98_12803.jpg?sign=1739342069-hYFI9avBESt5rO2VB478cPztR8D4GB14-0-a8f87b142678327cccd95bb1f47b9816)
T-S模糊模型与Mamdani模糊模型的区别在于,一是T-S模糊模型输出变量为常量或线性函数;二是T-S模糊模型输出为精确量。
T-S型的模糊推理系统非常适合于分段线性控制系统,例如在导弹、飞行器的控制中,可根据高度和速度建立T-S型的模糊推理系统,实现性能良好的线性控制。
5.1.2 仿真实例
设输入X∈[0,5],Y∈[0,10],将它们模糊化为两个模糊量,即“小”和“大”。输出Z为输入(x,y)的线性函数,模糊规则为
If X is small and Y is small then Z =-x+y-3
If X is small and Y is big then Z =x+y+1
If X is big and Y is small then Z =-2y+2
If X is big and Y is big then Z =2x+y-6
仿真程序见chap5_1.m。采用高斯隶属函数对输入进行模糊化,模糊推理系统的输入隶属函数曲线及输入/输出曲线如图5.1和图5.2所示。
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P99_4726.jpg?sign=1739342069-4OMerXZZga6ecUNuWXiaDzKcQWzkaCh0-0-5744d1e2377794ab40d7c8d039855624)
图5.1 T-S模糊推理系统的输入隶属函数曲线
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P99_4729.jpg?sign=1739342069-FUv5FWTpHhJ4LIaRHPRrmpWnWePE7zcR-0-9ddb755bb4b104cc4a684b279506ca2b)
图5.2 T-S模糊推理系统的输入/输出曲线
通过命令showrule(ts2)可显示模糊控制规则,共以下4条:
(1)If(X is small)and(Y is small)then(Z is first area)(1)
(2)If(X is small)and(Y is big)then(Z is second area)(1)
(3)If(X is big)and(Y is small)then(Z is third area)(1)
(4)If(X is big)and(Y is big)then(Z is fourth area)(1)
仿真程序:chap5_1.m
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P100_12809.jpg?sign=1739342069-y6v9fbMLV5TQamQJfdNK1tP13QGk3ISf-0-2041de05845d0dabfc370f5878569ab4)
5.1.3 一类非线性系统的T-S模糊建模
考虑如下非线性系统[1]
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P100_12811.jpg?sign=1739342069-SbEPKiLcHRn1bYfZHInXA56sgrayhGCM-0-e889ab3a244a10087c6fdf1976453a4f)
其中,x1(t)∈[-1,1],x2(t)∈[-1,1]。
上式可写为
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P100_12813.jpg?sign=1739342069-imp5iFhBxidrVtZheuWHDheaJJLmVpDc-0-5d10b1c50a3c974cd976e5ceec0885f7)
其中,x(t)=[x1(t) x2(t)]T。
定义
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P100_12815.jpg?sign=1739342069-jNUTrqyzOTqeaRW2HK5noC6nlF7i3wQo-0-917e31e613e486ef389a90673753e932)
则
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P101_12820.jpg?sign=1739342069-xh57TOGjljygkQ7oirjqY9Ro7ydgpJfL-0-60de11f68762d76c6acf8173cb3ee219)
考虑x1(t)∈[-1,1],x2(t)∈[-1,1],则
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P101_12822.jpg?sign=1739342069-1jzKkOenrUmUFPOmq4c5kkK6rnJcfmCm-0-e5558b3f95156942a41dd7c32de0f6ee)
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P101_12823.jpg?sign=1739342069-bm7ylqoULMPeS4ajt4jQyYw3izg6MWVa-0-d8827440809036e764d93fb65577747e)
针对z1(t),采用模糊集M1(z1(t))和M2(z1(t))来描述,针对z2(t),采用模糊集N1(z2(t))和N2(z2(t))来描述。采用三角形隶属函数分别描述z1(t)和z2(t)的模糊集,如图5.3和图5.4所示。隶属函数设计为
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P101_12825.jpg?sign=1739342069-8PJYIXTKFQ19vubuari2hMiqroSAbrnL-0-ab5a1e73ab4a945b871878d8b2162ecd)
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P101_12826.jpg?sign=1739342069-PQEXVPBvIVT0FRDt6uiEeESvkBXKh97x-0-375d2c24ac5235e5785b24d924038718)
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P101_4771.jpg?sign=1739342069-WssCkECWMdQkleErRdZeZSrNWHjMTKWn-0-8592b2562e1106ee5be8786566371d48)
图5.3 M1(z1(t))和M2(z1(t))隶属函数
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P101_4774.jpg?sign=1739342069-l9Au3x5v0r5Yc9TLWNDXeHaaLQAsBESA-0-df83fdb924236f1c4d378385857b64df)
图5.4 N1(z2(t))和N2(z2(t))隶属函数
将模糊集模糊化为两个模糊量,即“小”和“大”。模糊规则为
Rule1:If z1(t)is Big and z2(t)is Big then (t)=A1x(t)
Rule2:If z1(t)is Big and z2(t)is Small then (t)=A2 x(t)
Rule3:If z1(t)is Small and z2(t)is Big then (t)=A3 x(t)
Rule4:If z1(t)is Small and z2(t)is Small then (t)=A4 x(t)
结合式(5.4)~式(5.6),可得
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P102_12828.jpg?sign=1739342069-MvPs96uN6WMzIphSWZBsECtAkWMKCbDa-0-ab34b311864a76280c90b4372443ba8f)
模糊T-S模型输出为
![](https://epubservercos.yuewen.com/5343CC/17035792805330906/epubprivate/OEBPS/Images/Figure-P102_12830.jpg?sign=1739342069-nGW2IDYLdoJC6lIVVsQPmht0UpdhThkl-0-0040c594576ab57dd0e660e57b4e30b3)
其中
h1(z(t))=M1(z1(t))×N1(z2(t))
h2(z(t))=M1(z1(t))×N2(z2(t))
h3(z(t))=M2(z1(t))×N1(z2(t))
h4(z(t))=M2(z1(t))×N2(z2(t))
可见,通过T-S模糊建模,可将非线性系统式(5.2)在x1(t)∈[-1,1],x2(t)∈[-1,1]域内转化为线性系统的形式。
仿真程序:
(1)M1(z1(t))和M2(z1(t))隶属函数:chap5_2.m
%Define N+1 triangle membership function clear all; close all; z1=-1:0.01:1; M1=(z1+1)/2; M2=(1-z1)/2; figure(1); plot(z1,M1); hold on; plot(z1,M2); xlabel('z1)'; ylabel('Degree of membership)';
(2)N1(z2(t))和N2(z2(t))隶属函数:chap5_3.m
%Define N+1 triangle membership function clear all; close all; z2=0:0.01:4; N1=z2/4; N2=(4-z2)/4; figure(1); plot(z2,N1); hold on; plot(z2,N2); xlabel('z2)'; ylabel('Degree of membership)';