Python深度学习
上QQ阅读APP看书,第一时间看更新

第2章 神经网络的数学基础

本章包括以下内容:

❑ 第一个神经网络示例

❑ 张量与张量运算

❑ 神经网络如何通过反向传播与梯度下降进行学习

要理解深度学习,需要熟悉很多简单的数学概念:张量、张量运算、微分、梯度下降等。本章目的是用不那么技术化的文字帮你建立对这些概念的直觉。特别地,我们将避免使用数学符号,因为数学符号可能会令没有任何数学背景的人反感,而且对解释问题也不是绝对必要的。

本章将首先给出一个神经网络的示例,引出张量和梯度下降的概念,然后逐个详细介绍。请记住,这些概念对于理解后续章节中的示例至关重要。

读完本章后,你会对神经网络的工作原理有一个直观的理解,然后就可以学习神经网络的实际应用了(从第3章开始)。