![高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/582/26179582/b_26179582.jpg)
2.6.1 微分的概念
定义 设函数y=f(x)在点x0处可导,任给自变量x在x0处有改变量Δx,当Δx有微小改变量时,把f′(x0)Δx称为函数y=f(x)在点x0处的微分,记作,即
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00067011.jpg?sign=1738885528-SKHG0snWh3yrwSQb1AcnANQQ7AIJw6HO-0-1aeabf830421ea37182e274593dff9e1)
此时称函数y=f(x)在点x0处可微.
例1 如图2-4所示,一块正方形金属薄片受温度变化影响,其边长由x0变化到x0+Δx时,
(1)求此薄片的面积在边长x0处的微分;
(2)求此薄片的面积的改变量;
(3)求此薄片的面积在边长x0处的微分与改变量相差多少.
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00068001.jpg?sign=1738885528-1PFQmdYVGU4g1JuT761iJ1lyNLARfraH-0-069c9f48bdd7bf93b193c0c32d42299c)
图 2-4
解此薄片的面积函数为S=x2.
(1)由微分的定义,得在边长x0处的微分
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00068007.jpg?sign=1738885528-LuMb2KHqPxjtsQ4Y84c9giNqpcnJ5zGG-0-4c598d937e476cf9ad2d7c88f51b0244)
(2)边长由x0变化到x0+Δx时,此薄片的面积的改变量为
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00068002.jpg?sign=1738885528-DupWcOlkjAPNTw3gmx8KlsdVswwsv27K-0-2da559b836e780df379368872a58220a)
(3)薄片的面积在边长x0处的微分与改变量相差
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00068008.jpg?sign=1738885528-e1EXxLjF6PFk4fpUuuyYbxSODQe8Xbai-0-74912c79a4bf17a77673a6eed10d5699)
在例1中,如果x0=3,Δx=0.01,ΔS=0.0601,,它们相差0.0001.
一般地,随着Δx的绝对值越来越小,即当Δx→0时,Δy与dy之间是什么关系?它们相差多少?对此有下面的定理:
定理1 若函数y=f(x)在点x0处可微,则当f′(x0)≠0,且Δx→0时,Δy与dy是等价无穷小,即Δy~dy.
证明 因为函数y=f(x)在点x0处可微,则
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00068010.jpg?sign=1738885528-tFjtSBaNluo0r1wwQP99aCCI0vNkz9zo-0-61c9cb4e2dc41367ab69c6bf7503fa3d)
且函数y=f(x)在点x0处连续、可导,于是Δx→0时,Δy→0, ,即它们都是无穷小.
又因为f′(x0)≠0,所以
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00068003.jpg?sign=1738885528-bmAIhiwOhRdnBSRkRbj4TRG6ww5cVodK-0-b9c226a955684af6eb4ddd7b3f127ae1)
则Δx→0时,Δy与dy是等价无穷小,即Δy~dy.
定理2 若函数y=f(x)在点x0处可微,则当Δx→0时,Δy-dy=ο(Δx).
证明 因为函数在点x0处可微,所以函数y=f(x)在点x0处可导,则
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00068004.jpg?sign=1738885528-BaflAyg9xuTamPlAI1MQpCo9cVUSIF0D-0-af801667acee5f65ee6b76f55db05036)
根据具有极限函数与无穷小的关系,推得
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00068005.jpg?sign=1738885528-u9UBzSlA7CWGlruDR3gn7UHz86CHkH4h-0-35e6ef1babeea6362fdfae63167fa50b)
Δy=f′(x0)Δx+α(Δx)Δx.
移项,得 Δy-f′(x0)Δx=α(Δx)Δx,
且 α(Δx)Δx=ο(Δx).
将 代入上式,得
Δy-dy=ο(Δx).
发现:(1)因为当Δx→0时,Δy与dy是等价无穷小且Δy-dy=ο(Δx),所以Δy≈dy.
(2)当y=x时,由函数微分定义,得dy=dx=(x)′·Δx=1·Δx=Δx,则称自变量x的改变量Δx称为自变量的微分,记作dx,于是
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00069008.jpg?sign=1738885528-MstpNAz31weY5gCbpk7mcRiJWtDj5DoY-0-68660f7740d5e5319c9b664afb5e3acb)
若函数y=f(x)在某区间内每一点都可微,则称函数y=f(x)在此区间内可微,且dy=f′(x)dx.因为dx≠0,因此,所以,函数的导数是函数的微分与自变量微分的商,简称微商.