![高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/582/26179582/b_26179582.jpg)
上QQ阅读APP看书,第一时间看更新
1.4.1 第一重要极限
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00033009.jpg?sign=1738884343-55mAKp7R2CyMjLKkG1vbRSXJjuwZE79j-0-33c25c2af6f71fa52f7c7a68cc8bbe5e)
为了更好地理解第一重要极限,先给出如下夹逼定理.
定理(夹逼定理) 如果,且
G(x)≤f(x)≤F(x),
则
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00033011.jpg?sign=1738884343-lh10IP8NefPaDnENKXAt2sm9F1ZG5KAx-0-d2e3e9472357b27cde0cb4a98d6707ab)
从直观上可以看出,该定理是很明显的.当x→x0时,f(x)的左、右函数G(x)和F(x)的极限都同时无限趋近于常数A,则会“逼迫”中间函数f(x)也无限趋近于常数A.
下面根据该定理证明第一重要极限.
作单位圆,如图1-22所示,取圆心角∠AOB=x,令x→0+,不妨假设0<x<.由图可看出,S△AOB<S扇AOB<S△AOD,即
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034002.jpg?sign=1738884343-R1i8zzjqcjW5VtiK0haHZajU1ehSdms6-0-2fc8a685784ef4ad50030637cf1ab726)
图 1-22
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034003.jpg?sign=1738884343-tbqv3DP8Kolg6pld8tPA8z1IWewsgW8P-0-2f0dde294fbc414cda20e0ff1f14cc3e)
从而有
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034004.jpg?sign=1738884343-LrKVjxdUS9c1WJjsDdFV1aHeqzL0Dn6D-0-50133e4a37c0e063a079baf31c72a047)
取倒数
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034005.jpg?sign=1738884343-crILvw86klJwkPvg87J79kgc1OWJfAXd-0-ee36d0e43f6c6e8c41894dee2f1b8cf7)
因为 ,根据本节定理,证得
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034007.jpg?sign=1738884343-ANC2l0Bu0q6gCrJqhXR33DyOsDqHxuSa-0-5644c76bbc8fb231bcd654dab7d48f5b)
又因为cosx和 均是偶函数,所以当x→0-,即对于-
<x<0,结论仍成立,
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034010.jpg?sign=1738884343-MoBBWK9gg9wWzMDpgNTTKmMqJlnBKQzC-0-c5ea6d1beb95f2d2cdc95e5b00fafd7b)
由§1.2节定理2,有
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034011.jpg?sign=1738884343-xiN7hBjFMw5LdgLem3Effgunliyq2hCQ-0-657be7b2eb5b655c75d67152675c8f97)
第一重要极限公式(1-1)在极限运算中有重要的作用,要较好地掌握它,必须认清它的特点.
发现:(1)极限是 型,且含有正弦函数;
(2)极限为类型,x→x0或x→∞时,□→0,其本质为:
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034014.jpg?sign=1738884343-Ox1vjmegqPuXvYX5FaC5YyV0PcjOBTda-0-60134b155d3e9afa65350c4602068cab)
例1 求.
解 .
例2 求.
解
例3 求.
解
例4 求
解
例5 证明.
证明 令arcsinx=t,则x=sint,当x→0时,t→0,则
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00035004.jpg?sign=1738884343-C35FgVNqvcq9EO2EJL2XnKwbaqcVa5cv-0-31692f7d42acf7b46ceb8474c7acc7e8)
发现:(1) ;(2)
;(3)
;(4)sinkx≠ksinx.