![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
2.4.1 隐函数的求导法则
1.隐函数求导法
一般地,如果变量x,y之间的函数关系由方程F(x,y)=0所确定,那么这种函数就叫作由方程所确定的隐函数.把一个隐函数化成显函数,叫作隐函数的显化.如由方程x+y3-1=0解出.但有些隐函数显化很困难,甚至无法显化为初等函数,如x+y-exy=0,那么这样的函数怎样求导呢?
方法就是:方程两边同时对x求导,且y是x的函数;遇到含y的函数,要按复合函数求导法则进行求导.
例如,(siny)'=cosy·y',特殊地,当y=x时,(sinx)'=cosx·(x)'=cosx.
下面通过几个具体的例子来说明这个方法.
例1 求由方程y6-3x2+6x3y2=0所确定的隐函数y=y(x)的导数y'.
解 方程两边同时对x求导,可得
6y5·y'-6x+6(3x2·y2+x3·2y·y')=0,
由上式解出y',便得隐函数的导数为
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00064008.jpg?sign=1738858447-CYYkLisoSyUUVklhCTFOATp3wmVBFpwu-0-5e357a83c041046a5729b37124520025)
例2求由方程x+y-exy=0所确定的隐函数y=y(x)的导数y'x,并求y'x(0).
解 方程两边同时对x求导,可得
1+y'-exy·(xy)'=0,
即
1+y'-exy·(y+xy')=0,
由上式解出y',便得隐函数的导数为
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065001.jpg?sign=1738858447-abutHrYXY3TKoPrXbblkjybSVJ9g0h4E-0-026fee1c23a8f968e2f632204b9f8ce4)
当x=0时,代入x+y-exy=0,得y=1,代入y',得
y'x(0)=0.
例3 求椭圆在点M
处的切线方程.
解 椭圆方程两边同时对x求导,可得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065004.jpg?sign=1738858447-jq8dqp8gPtn8ExRg2WB1hyEC1AXEBd9e-0-a0d95da016ffcf5fa6d27c4a9c69be2b)
由上式解出y',便得隐函数的导数为
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065005.jpg?sign=1738858447-fgM5OABJQfb5usCWwRq9l5h5OqD0tSaU-0-7456f2e2e66533582fe9a9e5910fa95d)
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065006.jpg?sign=1738858447-OLmKgjaz1Hp2ivX9CyJs9pVmBHLaaV1k-0-6f74d16d4a85d378341ebf263eb156b8)
所以椭圆在点M 处的切线方程为
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065008.jpg?sign=1738858447-9GOfw9hBmLBMcNN2yWKpcZ0HTu8ldG8X-0-253a45025b681e4a47e1665b469de7e5)
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065009.jpg?sign=1738858447-JL5QJLpNP9I0cBjRGXBtpljN9ahm44N0-0-4e08ed051acdbef25cc7867048b48acd)
2.取对数求导法
根据隐函数的求导方法,还可以得到一个简化求导运算的方法,即取对数求导法.它适合于由几个因式通过乘、除、乘方、开方所构成的比较复杂的函数(包括幂指型函数y=u(x)v(x))的求导.这个方法是先取对数,再化乘、除为加、减,化乘方、开方为乘积,然后利用隐函数的求导方法求导.
例4 求下列函数的导数.
(1);(2)y=xsinx(x>0,x≠1).
解 (1)先在等式两边取绝对值,再取对数,得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065011.jpg?sign=1738858447-PXpGAMS0VACDy56mi8CG2YftmjYIVYtm-0-53259184a23b1d4949b6accecd5f6dd3)
两边同时对x求导,得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065012.jpg?sign=1738858447-H46REcCIJ2w6DHTURCAphkRzBf7qXXrD-0-dbfb004235acdbc13c459f5a1c819071)
所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065013.jpg?sign=1738858447-55IaObgTfbdIyl6aeSKZyqnJVI1Ak1tD-0-accd656eae704132d9e4c59c074081df)
(2)这是幂指型函数,对y=xsinx两边取对数,得
lny=sinxlnx,
两边同时对x求导,得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00066001.jpg?sign=1738858447-ABywAUOGM832vCrEWJyo9hWDWDfXr6rz-0-7467c79c4aee5cbddb089bdf50ff5a47)
所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00066002.jpg?sign=1738858447-M4u0xo4xHKtajTN9a8VVBarKu1Sc6EFf-0-62551579555ea7373c85b44a6097b6a6)