![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
2.4 光在金属表面的反射和折射[2],[5],[20],[21]
2.4.1 金属中的透射光
假设电磁波在介电常数为ε、磁导率为μ、电导率为σ的各向同性介质中传播,根据麦克斯韦方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0002.jpg?sign=1739307799-euTuGJrIkwMLkBjoUoIl52c004dwaxjI-0-8c530ffa4fd1590cce3697191660013d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0003.jpg?sign=1739307799-RWsRLtWsR1oS70F2ftp7Uyu3d9Y7PzpU-0-86e8fad02aec7c9b2e3693893c55ca86)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0004.jpg?sign=1739307799-1jHf8jnRx2UX6wx92mYsVm2RvX6cB3j1-0-fdbcfd4552a48e8ae5912d8343b7fd9c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0005.jpg?sign=1739307799-4AnO1mLVtfC30SQELiMBgWLItXrUP6Q6-0-7eda529f523acbb0329641fb6fa85976)
式中,传导电流密度j和自由电荷密度ρ之间满足电流的连续性方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0006.jpg?sign=1739307799-74BnnOg8fRJkXsN3DwFOkBpdQ5QjO6Iz-0-c9ed7161d1460de02efd0c1ad3428b80)
由本构关系
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0007.jpg?sign=1739307799-6Lq0u6NGjrGLnsX8h9g9pv6sgIXYxG6C-0-c2833dd574d1a676f4d63523ca204ac3)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0008.jpg?sign=1739307799-0LFSTQ5o9bQ9Z3oE9obuguUdi0Y3jnnx-0-9db317194521ba216f215e43013eb7e4)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0009.jpg?sign=1739307799-UPIGTCPc5N7w1jSlIiEjBSYex5EgE0B7-0-8e256cfc248c122e0d093c8c067f7f6c)
将式(2.4-3)、式(2.4-5)代入式(2.4-1b)得
▽×H-=σE
对上式求散度得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0011.jpg?sign=1739307799-J2K8h9fEKyPYRLy6b5HmMAgkYrIiJ85u-0-2ca530f7269702e109d1d6ac78b3f5a4)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0012.jpg?sign=1739307799-KwLD82ejf4li4dw84PTkBxnsCEzHjYPG-0-b87459616ac499c6739f71d79db456fb)
故有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0013.jpg?sign=1739307799-HBqpokC7811nErqqHIn0HjWLRGHYeBFn-0-225a16b77e431e9011d1ba7d60ee4b72)
其解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0014.jpg?sign=1739307799-zdbPzpqi15WVcKFNesTPIQ12diBfqDTl-0-71b1590c6169e8593a8da3751fc262a8)
其中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0015.jpg?sign=1739307799-U0ukw2zeaH9JVLDuXSXYmWDDrGB05Kmp-0-1ee81c48368947fea860d110ea728cf6)
τ称为弛豫时间。由此可见,自由电荷密度ρ随时间指数衰减。通常τ很短,对于金属约为10-1 8秒量级,因此金属中的自由电荷密度可认为始终为零,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0001.jpg?sign=1739307799-SjQGErVU4uR5k2gGt5QZPiJrYpG4rw18-0-190fa5b9e3bd9c23a478bdb3692962b4)
金属中的波动方程可表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0002.jpg?sign=1739307799-zBZDk1Wgz8Jnh5yb3YdBBWBfXqHiY236-0-12d4153d8751b2429dd02a6003770a4d)
对单色平面光波有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0003.jpg?sign=1739307799-bZgiueuoS8pTrxVAGhZtRGXZ5olUL5dt-0-b035b6db19b88e0c8ced56f7a6e51eb2)
将上式代入式(2.4-12)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0004.jpg?sign=1739307799-rTwBd9nLh5zLxXDIEtsB7udHNmlvyKRw-0-944b307e07c9551fb8ca735732b91c09)
引入复波数k~,令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0005.jpg?sign=1739307799-BMMw2cNmKeYZajMCB2N7LOYcMjX5McaS-0-2e974d893eeca130aa5fb5477e565d96)
再定义复介电常数ε~为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0006.jpg?sign=1739307799-OOPniUmvS1gNZHCGFdOKMuDDVETrgSiV-0-b493184d71773383a1d194dc333a1475)
这样得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0007.jpg?sign=1739307799-pfAMF8VUPyJvjdvOF3nxD0zLRiGIYzRJ-0-7fd4ddec94a7d8f6bfc4aace2c9d8a48)
它与介质对应的关系相似。同样,可引入复相速v~、复折射率n~,各自表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0008.jpg?sign=1739307799-G0TV7RVsW9sTSs0XFhJBiZ31DuOwAEq5-0-42e48d4a709ca17f45ad0372c2c44ea8)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0009.jpg?sign=1739307799-it4jKPJkHkaftA2XOBhsKjRE3pKUyZDw-0-9e05951d556e32083768b6acbba07295)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0010.jpg?sign=1739307799-qps3J2sWx5Mykrg96gCacRPia0mPTCh5-0-b0cdedbb4bef1da1620b9d885d485256)
式中,κ称为衰减系数。取式(2.4-19)和式(2.4-20)的平方,得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0011.jpg?sign=1739307799-7TNiyQcT33eU5cPJAOboQAGOWso18dYM-0-7f97ac30ab53539c89d437dbd0395b96)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0012.jpg?sign=1739307799-nZCI6ABkXDg2TmdTrPL29AUUPVZj4hOV-0-d25bde8d19c90d701603dcd0dad685cd)
故
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0013.jpg?sign=1739307799-ilewzmAKbsxusQyn4troWweL6ELMKA7l-0-dfe433549e58acd02770c2c096c4d57b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0014.jpg?sign=1739307799-nFwkwyFBcH3v1XGyZMDlopDqjsqGFi3i-0-92a5add0153e5c19d421f41255bfeaff)
由式(2.4-23)和式(2.4-24)解得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0015.jpg?sign=1739307799-CLnBx2VNvZT2q3AgWd3bbrn2cSIhyG1v-0-6d800f529664c7425f049248c251bfc2)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0016.jpg?sign=1739307799-wSSV9W718mGg2uGlnP2CKTf2K4q771s4-0-e368b486de9dbf163532cea6f3114f5e)
引入复波矢,令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0018.jpg?sign=1739307799-tgiCP0TsEauU7Tc5C8UO3TycfT2PFhh6-0-e1f5cc0209f2a3aac19520935341cc4d)
式中,为波矢的单位矢量,k'、k″均为实矢量。通常也将
定义为折射矢量N,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0021.jpg?sign=1739307799-4tXRM9Sm0e9o5bmbtrKfH5atc7vzl92G-0-fab73cf62e0b5e290206213f26b02652)
利用复波矢,可以将金属中电场矢量的波动形式表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0023.jpg?sign=1739307799-HQlABFXZGBTDEqQ3wktHYRVelvIT9J6m-0-98c4d10fe5a33a652d8386cc3894c6d4)
式中,为平面波的振幅,显然振幅沿k″方向衰减,因此也称k″为衰减常数;k'·r为
相位传播因子,k'称为传播常数。k'决定平面波的等相面,而k″则决定等幅面。一般地,k'与k″的方向不同,因此等幅面与等相面不一致,说明金属中的透射波一般是非均匀波。
不妨先看一个简单的情况,即单色平面光波垂直于金属表面传播,假设金属表面为xy平面(z=0),光波沿z轴在金属中传播,此时,k'与k″都沿z轴方向,式(2.4-29)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0002.jpg?sign=1739307799-VqLZfB4JfCB8Q7NjTSxmfZtPbnlby43S-0-041457d1d30aea55dd6463b80571df64)
其中,k'、k″分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0003.jpg?sign=1739307799-PB1vCB3hVDklL6duKubRUNpKkKSDPJ6A-0-e389b7d7d1d971b058109c94708ae34b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0004.jpg?sign=1739307799-Hcvh2V1E1NOHtrYSHDqqOaCi7RB9xqKL-0-d5e3fce1d157e752ac857c81ea8e5331)
对于良导体,σ/(εω)≫1,则有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0005.jpg?sign=1739307799-aRrHLhsCPMlgHxTec3rGaeNzyUj7vGmH-0-8e4df9562c77be70ce6f45711dcb30cc)
根据式(2.4-30),在z=z0=1/k″处,振幅降为表面处振幅的e-1,z0称为穿透深度,其值为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0006.jpg?sign=1739307799-lzdwFppPlO2gYniMOIxBXcIqrMyTgW8i-0-1d4000787c1a2a31e8da6b6c4f783b77)
可见,穿透深度与光波频率及导体的电导率的平方根成反比。以铜为例,其电导率约为5.9× 107/(Ω·m),对于可见光,穿透深度约为数纳米。
将式(2.4-30)代入麦克斯韦方程组可以得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0007.jpg?sign=1739307799-ut2bogDBBleBkNleqlnpAmdncNnvT7D9-0-37dd46fc4dc1b06010e0bd58fe1987d5)
式中,^为表面法线方向的单位矢量,注意不要与折射率混淆。对于良导体,将式(2.4-33)代入式(2.4-35)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0009.jpg?sign=1739307799-wQs4dSAlIlmlLiRfDLhIljlwGg3W8UOD-0-f0c2ed49676ba960925180d8855382a1)
可见,磁场的相位比电场的相位落后π/4。并且
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0010.jpg?sign=1739307799-ucJUwx8kjT8p9YCWKVPKQlDAK4XwDIGG-0-3915c16c829ff5a203f2fc7f18e1f725)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0011.jpg?sign=1739307799-PIhfARtjAAFtj92j2E70rn63pzWiy8CG-0-a417c0c2afc425c2c22a7bd7c4a7b761)
而在介质中,有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0012.jpg?sign=1739307799-oXaUShZu1WJXySR3vFAK7CajZzUL5d90-0-bd8a17daa2fb5ecc5f8f626ef8c16bf9)
这说明相对于介质,在金属中电磁波的磁场的作用比电场的作用要大。
下面来讨论一个普遍的例子。假设介质1是空气,介质2是金属,将金属的复折射率写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0014.jpg?sign=1739307799-L1WlrL46b1amsE5R84DqUpQMTofiRRz4-0-c6af46aef7887d6f3afe16fbfbe0eeb8)
由斯内尔定律
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0015.jpg?sign=1739307799-IwjAqrOqalyPHFnfF5tJTp9SeyduI649-0-17c0348eeedfb680ef52c40660945945)
因为为复数,因此
也是复数;显然
不再有折射角的简单几何意义。在可见光范围内,金属反射不再满足布儒斯特定律。下面讨论光在金属中的实际折射角。设入射面为xz平面,金属中光波相位的空间变化为
·r,其中
可表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0001.jpg?sign=1739307799-FRGDsWgl09msUpWSNp2nfAtJmb9d218u-0-917a582ae71a3ec9d5f379082960d1d8)
由式(2.4-41)和式(2.4-42),可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0002.jpg?sign=1739307799-Qw8ZAVmuW7803X0b9VTz3jGGoIG70Bzq-0-1da0b90938a5c3b7f7906eae3d2c8325)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0003.jpg?sign=1739307799-8jP1abl4UTo74sfhuuRpBR1mOqCqdqPm-0-78d6f77d26be393a264505523bef8451)
为运算方便起见,令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0004.jpg?sign=1739307799-cY1nH5NQNQGqq9oPbQDkZpoXNfVJbmU7-0-83f420350d87943e94ff7d8f71d0dabc)
式中,q和γ都是实数。经过计算,得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0005.jpg?sign=1739307799-LGSM12QuOtxt5pa5T0zAAJ0vUS8I42Ce-0-00e78d544cf42f267bdefa2b69b02303)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0006.jpg?sign=1739307799-EBrzDXRMOZ7Z24OcnNBzch2tL8jCJ2yn-0-0f1aa0ed9bb1427b65974187840f2e08)
于是得到相位的空间变化为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0007.jpg?sign=1739307799-hC1Fml9rNxKDkTwMPNFRC1ttJ6DCitFf-0-9ef0e7a84c5fb0caf24d355ed6e55b92)
将上式代入式(2.4-29),可以得到等幅面方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0008.jpg?sign=1739307799-czJHxlYsG7LDnZCwQF5HHUx9DjEfQT2T-0-3191d4df12ac4c655d68f07533586209)
即z为常数的平面。同样也得到等相面方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0009.jpg?sign=1739307799-6NhhT1p4QBUTTc7sxxgQH8uZ7W46OWB1-0-64bdb90555c527bddde6ff65479434de)
可见,等相面为平面,设该平面的法线与界面法线的夹角为,则
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0011.jpg?sign=1739307799-c7W1DUlAYDB5OwNmXDRFNTs3AEonxWdr-0-0bb08e5465d9c5f5d62ad379f64b3d9f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0012.jpg?sign=1739307799-BbBlVuoMLszwpTdUU6NAIw3WL0keygvb-0-88cb23a1e754d59c20b0cd69bfea1ba1)
则由上式可以得到,光从空气入射到金属中实数形式的折射定律为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0013.jpg?sign=1739307799-m2erCBFXe6SFqzfykT9iMq8X14BZxaXs-0-c02d9b980bde28264200672bcb10375a)
其中为光在金属中真实折射角
为金属的实折射率,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0016.jpg?sign=1739307799-jUhJBXMVQIojb7DPNPkuHF1V3F3sUFyp-0-cb1a5c2716b6d8d8c5e92bbc01ce50e7)
显然与入射角θ1有关。
2.4.2 金属界面的反射光
假设光从折射率为n1的介质入射到折射率为=n(1+iκ)的金属表面,则反射光仍然在介质中,故反射光还是均匀波。s光和p光的振幅反射率分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0019.jpg?sign=1739307799-NTE9M780SSwltJVUiyF79f98qSrvUqXj-0-fbd045f0e3777d05725a40f269e96ab4)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0020.jpg?sign=1739307799-iBa2gzjflPxUJQM3IwnfMxxS08cLJxel-0-3f2c8bcf5bc87718dd78be50d445119d)
由斯内尔定律和三角函数关系可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0001.jpg?sign=1739307799-IiANlmHaDTbFyBxmfMlJIcXXG5gCswON-0-0b85434a54feae1c676340fcbd9a5e06)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0002.jpg?sign=1739307799-16J3Jfh5eq6lxZQTbLB8t1b1tMFGUYiY-0-7f4e9c87ba7f897da1f0ebeafa22afcb)
则由式(2.4-53a)和式(2.4-53b)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0003.jpg?sign=1739307799-lLW5PAadW3gGTjaLUkjd02wNpZBewSI0-0-fbc4a27123ae7a1eebb07764a3e52b5f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0004.jpg?sign=1739307799-V4pnA0rgQZa4RWwpIr5BSmvxAbqRFbez-0-6c07fed80500139958dee956f8f33d6e)
s光和p光的光强反射率分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0005.jpg?sign=1739307799-kd0d9cPK94rjsBHdFF90mXRYg1o010om-0-b4594a1655c31a148b110bf5d15dd1dd)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0006.jpg?sign=1739307799-ZIPvizwr5olTNQ5i0iHxCac3FW1yoay4-0-07f795c3afd8cd2f5ac695b109cdc220)
令δ=δs-δp,由式(2.4-44)可得,当θ1从0°到90°时,δ从180°降到0°;其中,当θ1=θP时,δ=90°,θP称为主入射角,类似于布儒斯特角。当入射角为主入射角时,RP有极小值,但不为零,故光在金属表面的反射不符合布儒斯特定律。相应地引入主方位角ΨP,定义为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0007.jpg?sign=1739307799-yryRWQxbSeuPGbo8HjTHwSShxttRe90x-0-f4eefedf9c31d084863bcaed664bc04b)
可以证明[2],金属的光学常数n、κ与主入射角θP及主方位角ΨP近似满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0008.jpg?sign=1739307799-5jsTKGjrkP1OqiRXulEw4M8qe3UMtDKX-0-0aabf41909d397adf2fa891ff0945169)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0009.jpg?sign=1739307799-PlHJHXHW6UGQeofmD5WACUE9LThlVfAX-0-02d06585f0ed0e846a18b892758b993b)
因此,通过对主方位角ΨP和主入射角θP的测量,可以获得金属的光学常数。