会员
神经网络设计与实现
(英)列奥纳多·德·马尔希 劳拉·米切尔更新时间:2021-06-24 11:18:39
最新章节:11.4 结语开会员,本书免费读 >
本书是一本神经网络实践进阶指南,适合对AI和深度学习感兴趣并且想进一步提高技能的读者阅读。本书从机器学习基础、深度学习应用和高级机器学习这三个方面入手,结合算法理论、代码实现和应用场景,介绍了机器学习的新动向和新技术。本书分为三部分:第1部分网络神经入门,主要介绍了人工智能历史、机器学习概述和神经网络基础;第二部分,深度学习应用,主要是基于卷积神经网络图像处理、文本挖掘、循环神经网络、利用迁移学习重用神经网络;第三部分,高级应用领域,主要介绍对生成对抗网络、自动编码器、损失函数、深度信度网络、强化学习基本定义等。
品牌:机械工业出版社
译者:朱梦瑶 郭涛 赵子辉 余秋琳
上架时间:2021-05-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
神经网络设计与实现最新章节
查看全部- 11.4 结语
- 11.3.5 问责制
- 11.3.4 AI安全性
- 11.3.3 自动化
- 11.3.2 可解释性
- 11.3.1 AI伦理问题
- 11.3 通用人工智能
- 11.2 机器学习的未来
- 11.1 本书总结
- 第11章 下一步是什么
(英)列奥纳多·德·马尔希 劳拉·米切尔
主页
同类热门书
最新上架
- 会员
PyTorch深度学习应用实战
《PyTorch深度学习应用实战》以统计学/数学为出发点,介绍深度学习必备的数理基础,讲解PyTorch的主体架构及最新的模块功能,包括常见算法与相关套件的使用方法,例如对象侦测、生成对抗网络、深度伪造、图像中的文字辨识、脸部辨识、BERT/Transformer、聊天机器人、强化学习、自动语音识别、知识图谱等。本书配有大量案例及图表说明,同时以程序设计取代定理证明,缩短学习过程,增加学习乐趣。计算机15.2万字 - 会员
人工智能新时代:核心技术与行业赋能
本书以人工智能为核心,上篇讲述了人工智能理论知识及发展蓝图规划,目的是帮助读者认识人工智能,找到入局人工智能领域的途径和方法;中篇罗列了可以为人工智能赋能的前沿技术,包括NLP、机器学习、大数据、物联网、区块链等;下篇总结了人工智能对交通、农业、医疗、制造、教育、金融、文娱等行业的影响和作用,旨在让读者了解人工智能是如何在这些行业实现商业化落地的。本书从多个角度出发,描绘了一幅完整的人工智能发展蓝计算机15.8万字 - 会员
ChatGPT漫谈
本书深度探讨了构建和训练ChatGPT模型涉及的核心技术,以及ChatGPT在各种实际应用中的作用。全书精心划分为三部分,其中第1章为第1部分,第2章为第2部分,第3章和第4章为第3部分。首先,详细阐述了机器学习的历史演变与各种学习范式,同时也揭示了在人工智能生成内容(AIGC)领域下,图像处理和自然语言处理技术的历史发展趋势;接下来,对ChatGPT的运行机制和关键算法进行深度解析,包括大规模模计算机10.8万字 - 会员
文心一言:人人都能上手的AI工具
本书作为文心一言的学习指南,全面、细致地介绍了文心一言PC端和App的各项功能和使用方法,力求通过简洁明了的语言和图文并茂的形式,让读者快速掌握文心一言的各项功能。全书共8章,首先简单介绍了人工智能发展的几个阶段及文心一言的相关研发背景;随后介绍了文心一言的基础页面及功能等内容,以及文心一言在学习、工作、生活娱乐方面的应用及相关案例;接着介绍了文心一言的插件,以及文心一言App的功能和使用技巧;最计算机10.7万字 - 会员
ChatGPT大模型:技术场景与商业应用
ChatGPT作为人工智能领域的一大进步,引起了热议,其强大功能的背后离不开大模型的支持。大模型指的是参数规模超过千万的机器学习模型,主要应用于语音识别、计算机视觉等领域。本书聚焦大模型,对大模型的技术场景和商业应用展开详细叙述。本书主要从典型应用ChatGPT入手,探寻其背后支撑大模型的魅力。首先,本书对大模型的基础概念、产业格局、带来的新型商业模式进行讲解,展现了大模型的发展现状和商业化潜力。计算机13.2万字 - 会员
洞察AIGC:智能创作的应用、机遇与挑战
《洞察AIGC:智能创作的应用、机遇与挑战》内容分为3篇:第1篇AIGC的蜕变讲述AIGC的发展历史及其背后的智能;第2篇AIGC的应用讲述AIGC在文学创作、日常办公、知识管理、科研出版、工业制造、健康医疗、金融服务、品牌营销领域的应用现状及常用工具;第3篇AIGC的机遇与挑战讲述AIGC的资本与技术前景,同时提出需要注意的风险。计算机13.9万字 - 会员
破解深度学习(基础篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字 - 会员
破解深度学习(核心篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的核心知识、原理和内在逻辑。经过基础篇的学习,想必你已经对深度学习的总体框架有了初步的了解和认识,掌握了深度神经网络从核心概念、常见问题到典型网络的基本知识。本书为核心篇,将带领读者实现从入门到进阶、从理论到实战的跨越。全书共7章,前三章包括复杂CNN、RNN和注意力机制网络,深入详解各类主流模型及其变体;第4章介绍这三类基计算机13.4万字 - 会员
从零开始大模型开发与微调:基于PyTorch与ChatGLM
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch2.0深度学习环境搭建计算机12.8万字